Bilinear Forms on the Dirichlet Space

NICOLA ARCOZZI

UNIVERSITÀ DI BOLOGNA, ITALY

ABSTRACT. (Joint work with R. Rochberg, E. Sawyer, B. Wick). Let \mathcal{D} be the classical Dirichlet space, the Hilbert space of holomorphic functions on the disk. Given a holomorphic symbol function b we define the associated Hankel type bilinear form, initially for polynomials f and g, by $T_b(f,g) := \langle fg, b \rangle_{\mathcal{D}}$, where we are looking at the inner product in the space \mathcal{D} . We let the norm of T_b denote its norm as a bilinear map from $\mathcal{D} \times \mathcal{D}$ to the complex numbers. We say a function b is in the space \mathcal{X} if the measure $d\mu_b := |b'(z)|^2 dA$ is a Carleson measure for \mathcal{D} , and we norm \mathcal{X} by

$$||b||_{\mathcal{X}} := |b(0)| + ||b'(z)|^2 dA||_{CM(\mathcal{D})}^{1/2}.$$

Our main result is that T_b is bounded if and only if $b \in \mathcal{X}$ and

 $||T_b||_{\mathcal{D}\times\mathcal{D}}\approx ||b||_{\mathcal{X}}.$