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The space of embedded surfaces in a manifold

Our purpose is to study the space of all oriented subsurfaces of a given manifold.

For this, we fix a compact, connected, oriented surface Σg and a “background”
manifold M, and consider the set

Eg (M) =

{
W ⊂ M

∣∣∣∣ W is an oriented surface
in M diffeomorphic to Σg

}
We endow it with the quotient topology of the quotient map

Emb(Σg ,M) −→ Eg (M)

given by sending an embedding f to its image f (Σg ).

We’ll need to consider the space Eνg (M) of pairs (W , u) where W ∈ Eg (M) and
u : NW → U ⊂ M is a tubular neighbourhood. Forgeting the tubular
neighbourhood gives a fibre bundle

Eνg (M) −→ Eg (M)

which is also a weak homotopy equivalence.
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Theorem A (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, and ∂M 6= ∅, then the
scanning map

Sg : Eνg (M) −→ Γc(S(TM)→ M)g

induces an isomorphism in integral homology in degrees k ≤ 2
3 (g − 1).

Theorem C (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, then the scanning map

Sg : Eνg (M) −→ Γc(S(TM)→ M)g

induces an isomorphism in integral homology in degrees k ≤ 2
3 (g − 1).
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The fibre bundle S(TM)

From an inner product vector space V , we can construct the following:

The Grassmannian of oriented linear 2-planes in V ,

Gr+
2 (V ) = {oriented linear 2-planes in V }.

The Grassmannian of oriented affine 2-planes in V ,

γ⊥2 (V ) = {oriented affine 2-planes in V }
= {(P, v) | P is an oriented linear 2-plane and v ∈ P⊥}.

Forgetting the vector v we obtain a vector bundle of rank dim V − 2:

γ⊥2 (V ) −→ Gr+
2 (V )

The Thom space of this vector bundle,

S(V ) := Th(γ⊥2 (V )→ Gr+
2 (V )).
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The fibre bundle S(TM)

Consider now a vector bundle E → M endowed with a metric.

Definition

The fibre bundle S(E )→ M is the result of applying the construction S fibrewise
to the fibre bundle E → M.

If Ep is the fibre of E over p ∈ M, then we obtain a fibre bundle

S(Ep) −→ S(E ) −→ M.

In particular, for the tangent bundle of a Riemannian manifold M, we obtain a
fibre bundle

S(TpM) −→ S(TM) −→ M.
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The scanning map Sg : Eνg (M) −→ Γc(S(TM)→ M)g

The scanning map approximates each oriented surface W ⊂ M with its
tangent bundle.

W� _

��

p 7→TpW⊂TpM // Gr+
2 (TM)� _

��
U

p 7→Tπ(p)W⊂TpM //� _

��

π

OO

γ⊥2 (TM)� _

��
M

p 7→∞∈S(TpM) // S(TM).

First, if p ∈W , we have the Gauss map. Second, if
π : U →W ⊂ U is a tubular neighbourhood of W , we can identify TpM as a
translation of Tπ(p)M, and Tπ(p)W as an affine subspace of TpM. Third, we may
send any other point to the point at infinity (interpreted as the empty subspace).
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The scanning map

We have obtained the scanning map:

Sg : Eνg (M) −→ Γc(S(TM) −→ M)

(W , u) 7−→ Sg (W , u).

Lemma
If M is simply connected and of dimension at least 5, then

π0(Γc(S(TM)→ M)) ∼= H2(M;Z)× 2Z.

The space of compactly supported genus g sections Γc(S(TM)→ M)g is the
union of those components labeled by H2(M;Z)× {2− 2g}.

Lemma

The image of Sg is contained in Γc(S(TM)→ M)g .
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Relation to previous works

BΣn

Thm B Nakaoka ’60
Thm A Barratt–Priddy ’72

Cn(M) := Emb([n],M)/Σn

Thm B McDuff ’75
Thm A McDuff ’75

BDiff+(Σg )

Thm B Harer ’85
Thm A Madsen–Weiss ’07

Eg (M) := Emb(Σg ,M)/Diff+(Σg )

Thm B Martin Palmer: Stability for embedded disconnected submanifolds.
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Resolutions I

Definition
A semi-simplicial space X• is a simplicial space without degeneracies, that is, a
functor X• : ∆inj → Spaces from the full subcategory ∆inj ⊂ ∆ whose morphisms
are the inclusions. A maps of semi-simplicial spaces is a natural transformation.

As usual, we denote by Xn the image of [n].

Definition
An augmented semi-simplicial space is a triple consisting of

a space X ,

a semi-simplicial space X• and

a map ε : X0 → X (called augmentation) that equalizes the face maps
∂0 : X1 → X0 and ∂1 : X1 → X0.

We denote by εi : Xi → X the unique composition of face maps and ε. A map
between augmented semi-simplicial spaces is a pair (X → Y ,X• → Y•) that
commutes with the augmentation maps.

An augmented semi-simplicial space (X ,X•, ε) is the same as a map from X• to
the constant semi-simplicial space X whose face maps are identities.
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Resolutions II

Example (Hatcher, Algebraic Topology)

A semi-simplicial space with values in discrete spaces (aka sets) is called a ∆-set.

There is a functor (the realization)

‖ − ‖ : Semi-simplicial spaces −→ Spaces,

that sends the constant semi-simplicial space X to X , hence an augmentation
map X0 → X induces a map ‖X•‖ → X , which we call realized augmentation.

Definition
We say that a semi-simplicial space X• is a resolution of a space X if X• is
augmented over X and the realized augmentation is a weak homotopy
equivalence. A resolution of a map f : X → Y is a pair X•,Y• of resolutions of
X ,Y and a map f• : X• → Y• that extends the map f .
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Techniques I: How to prove that something is a resolution

Let (X ,X•, ε) be an augmented semi-simplicial space.

Lemma
If x ∈ X , then there is a homotopy fibre sequence

‖hofibx(ε•)‖ → ‖X•‖ → X .

We say that (X ,X•, ε) is an augmented topological flag complex if in addition

the product map Xi → X0 ×X . . .×X X0 is an open embedding;

a tuple (x0, . . . , xi ) is in Xi ⇔ (xj , xk) ∈ X1 for all 0 ≤ j < k ≤ i .

Lemma (Galatius–Randal-Williams ’12)

Suppose in addition that

1 ε : X0 → X has local sections;

2 given any finite collection {x1, . . . xn} ⊂ X0 in a single fibre of ε over some
x ∈ X , there is a x∞ in that fibre such that each (xj , x∞) ∈ X1.

Then ‖ε•‖ : ‖X•‖ → X is a weak homotopy equivalence.
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Techniques II: How to prove that something is a fibration

Definition (Palais ’60, Cerf ’61)

If G is a (topological) group acting on X , we say that X is G -locally retractile if,
for each point x ∈ X , the orbit map G × {x} → X that sends g 7→ g · x has local
sections (in the weak sense).

Lemma (Palais ’60, Cerf ’61)

If X and Y are G -spaces, and f : X → Y is G -equivariant and Y is G -locally
retractile, then f is a locally trivial fibration.

Proposition (Palais ’60, Cerf ’61, Lima ’63, Binz–Fischer ’81)

The space of embeddings of a compact manifold into a manifold M and the space
Eg (M) are Diff(M)-locally retractile.
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Techniques III: Homology connectivity

Lemma

If X• → X is an m-resolution, Xi is homologically (n − i)-connected, and m ≥ n,
then X is homologically n-connected.

Lemma
If a bundle map over B

Fp

��

// F ′p

��
E

��

// E ′

��
B B

satisfies that for each p ∈ B the induced map of fibres Fp → F ′p is homologically
k-connected, then the map between total spaces is also homologically
k-connected.
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Proof: The two steps

1 construct resolutions of the source and target of the scanning map

Fg (M)• −→ Eνg (M), Gg (M)• −→ Γc(S(TM)→ M)g

and a resolution of the scanning map

Fg (M)• //

��

Gg (M)•

��
Eνg (M) // Γc(S(TM)→ M)g .

2 Construct vertical maps (called approximations)

Eνg (M \ {p1, . . . , pi})

��

// Γc(S(TM \ {p1, . . . , pi})→ M \ {p1, . . . , pi})g

��
Fg (M)i // Gg (M)i

from a scanning map for which Theorem A applies, and deduce that the
bottom map is homologically 2

3 (g − 1)-connected.
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Proof: Resolution of Eνg (M)

Let Fg (M)i be the space of tuples (W , a, d0, . . . , di ) where
1 (W , u) ∈ Eνg (M)
2 d0, . . . , di : Dn → M are disjoint embeddings of discs such that dj(0) /∈ U for

all j .

These spaces form a semi-simplicial space Fg (M)• where the jth face map forgets
the jth disc, and there is an augmentation to Eνg (M) that forgets all the discs.

Proposition

Fg (M) is a resolution of Eνg (M).

Proof.

Let F ′g (M)• the semi-simplicial space defined as Fg (M)•, except that the
embeddings are only required to be disjoint at the centers of the discs. Then

the inclusion Fg (M)• ⊂ F ′g (M)• is a levelwise equivalence.

F ′g (M)• is a topological flag complex augmented over Eνg (M).

F ′g (M)• satisfies the conditions of our lemma on topological flag complexes,
hence is a resolution.
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Proof: Resolution of Γc(S(TM)→ M)g

Let Gg (M)i be the space of tuples (f , d0, . . . , di , h0, . . . , hi ) where

1 f ∈ Γc(S(TM)→ M)g ;

2 d0, . . . , di : Dn → M are disjoint embeddings of discs such that dj(0) /∈ U for
all j .

3 h0, . . . , hi are smooth homotopies of sections of d∗j (S(TM)), constant near
the boundary, and such that

hj(x , 0) = f ◦ dj , hj(0, 1) =∞.

The jth face map forgets dj and hj , and there is an augmentation to
Γc(S(TM)→ M)g by forgetting all discs and homotopies.

Proposition

Gg (M)• is a resolution of Γc(S(TM)→ M)g .

Proof.
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Proof: Resolution of the scanning map

We can extend the scanning map to a map of resolutions:

Fg (M)• //

��

Gg (M)•

��
Eνg (M) // Γc(S(TM)→ M)g

by sending a tuple (W , u, d0, . . . , di ) to (S (W , u), d0, . . . , di , h0, . . . , hi ), where hj

are constant homotopies.
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Proof: First step accomplished

1 construct resolutions of the source and target of the scanning map

Fg (M)• −→ Eνg (M), Gg (M)• −→ Γc(S(TM)→ M)g

and a resolution of the scanning map

Fg (M)• //

��

Gg (M)•

��
Eνg (M) // Γc(S(TM)→ M)g .

2 Construct vertical maps (called approximations)

Eνg (M \ {p1, . . . , pi})

��

// Γc(S(TM \ {p1, . . . , pi})→ M \ {p1, . . . , pi})g

��
Fg (M)i // Gg (M)i

from a scanning map for which Theorem A applies, and deduce that the
bottom map is homologically 2

3 (g − 1)-connected.
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Proof: The approximation maps

Forgeting the surface + tubular neighbourhood or the section defines a pair of
maps

Fg (M)i

��

Gg (M)i

��
Ci (M) Ci (M),

to the space Ci (M) := Emb([i ]× Dd ,M).
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Proof: The approximation maps

Forgeting the surface W + tubular neighbourhood or the section gives homotopy
fibre sequences

Eνg (M \ p)

��

Γc(S(TM \ p)→ M \ p)g

��
Fg (M)i

��

Gg (M)i

��
Ci (M) Ci (M),

to the space Ci (M) := Emb([i ]× Dd ,M). The fibre is taken over the point
(d0, . . . , dj) and p = {d0(0), . . . , di (0)}.
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Proof: The approximation maps
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to the space Ci (M) := Emb([i ]× Dd ,M). The fibre is taken over the point
(d0, . . . , dj) and p = {d0(0), . . . , di (0)}.

The scanning map commutes with the map between spaces of i-simplices.

Corollary

Since the scanning map on the fibres is a homology isomorphism in degrees
∗ ≤ 2

3 (g − 1), it follows from a previous lemma that the map between total spaces
is a homology isomorphism in those degrees.
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Proof: Second step accomplished

1 construct resolutions of the source and target of the scanning map
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