Stable homology of spaces of embedded surfaces: Closed background manifolds

Federico Cantero Morán Universität Münster

December 13, 2013

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold. For this, we fix a compact, connected, *oriented* surface Σ_g and a "background" manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \ \middle| \ egin{array}{c} W \ ext{is an oriented surface} \ ext{in } M \ ext{diffeomorphic to } \Sigma_g \end{array}
ight\}$$

A D F A A F F

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold. For this, we fix a compact, connected, *oriented* surface Σ_g and a "background" manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \middle| \begin{array}{c} W \text{ is an oriented surface} \\ \text{in } M \text{ diffeomorphic to } \Sigma_g \end{array} \right\}$$

We endow it with the quotient topology of the quotient map

$$\operatorname{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold. For this, we fix a compact, connected, *oriented* surface Σ_g and a "background" manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \ \middle| \ egin{array}{c} W \ ext{is an } oriented \ ext{surface} \ \end{array}
ight\}$$
 in M diffeomorphic to Σ_g

We endow it with the quotient topology of the quotient map

$$\operatorname{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.

We'll need to consider the space $\mathcal{E}_g^{\nu}(M)$ of pairs (W, u) where $W \in \mathcal{E}_g(M)$ and $u \colon NW \to U \subset M$ is a tubular neighbourhood.

ADEA

Our purpose is to study the space of all *oriented* subsurfaces of a given manifold. For this, we fix a compact, connected, *oriented* surface Σ_g and a "background" manifold M, and consider the set

$$\mathcal{E}_g(M) = \left\{ W \subset M \left| egin{array}{c} W ext{ is an } oriented ext{ surface } \\ ext{ in } M ext{ diffeomorphic to } \Sigma_g \end{array}
ight\}$$

We endow it with the quotient topology of the quotient map

$$\operatorname{Emb}(\Sigma_g, M) \longrightarrow \mathcal{E}_g(M)$$

given by sending an embedding f to its image $f(\Sigma_g)$.

We'll need to consider the space $\mathcal{E}_g^{\nu}(M)$ of pairs (W, u) where $W \in \mathcal{E}_g(M)$ and $u \colon NW \to U \subset M$ is a tubular neighbourhood. Forgeting the tubular neighbourhood gives a fibre bundle

$$\mathcal{E}^{\nu}_{g}(M)\longrightarrow \mathcal{E}_{g}(M)$$

which is also a weak homotopy equivalence.

イロト イポト イヨト イヨト

Theorem A (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, and $\partial M \neq \emptyset$, then the scanning map

$$\mathscr{S}_g : \mathscr{E}_g^{\nu}(M) \longrightarrow \Gamma_c(\mathscr{S}(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g-1)$.

Theorem C (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, then the scanning map

$$\mathscr{S}_g : \mathscr{E}_g^{\nu}(M) \longrightarrow \Gamma_c(\mathscr{S}(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g-1)$.

The fibre bundle S(TM)

From an inner product vector space V, we can construct the following:

• The Grassmannian of oriented linear 2-planes in V,

 $\operatorname{Gr}_2^+(V) = \{ \text{oriented linear 2-planes in } V \}.$

Image: A math a math

The fibre bundle S(TM)

From an inner product vector space V, we can construct the following:

• The Grassmannian of oriented linear 2-planes in V,

 $\operatorname{Gr}_2^+(V) = \{ \text{oriented linear 2-planes in } V \}.$

• The Grassmannian of oriented affine 2-planes in V,

 $\gamma_2^{\perp}(V) = \{ \text{oriented affine 2-planes in } V \}$ = $\{ (P, v) \mid P \text{ is an oriented linear 2-plane and } v \in P^{\perp} \}.$

The fibre bundle S(TM)

From an inner product vector space V, we can construct the following:

• The Grassmannian of oriented linear 2-planes in V,

 $\operatorname{Gr}_2^+(V) = \{ \text{oriented linear 2-planes in } V \}.$

• The Grassmannian of oriented affine 2-planes in V,

$$\gamma_2^{\perp}(V) = \{ \text{oriented affine 2-planes in } V \}$$

= $\{ (P, v) \mid P \text{ is an oriented linear 2-plane and } v \in P^{\perp} \}.$

Forgetting the vector v we obtain a vector bundle of rank dim V - 2:

$$\gamma_2^{\perp}(V) \longrightarrow \operatorname{Gr}_2^+(V)$$

• The Thom space of this vector bundle,

$$\mathcal{S}(V) := \operatorname{Th}(\gamma_2^{\perp}(V) \to \operatorname{Gr}_2^+(V)).$$

Consider now a vector bundle $E \rightarrow M$ endowed with a metric.

Definition

The fibre bundle $S(E) \to M$ is the result of applying the construction S fibrewise to the fibre bundle $E \to M$.

If E_p is the fibre of E over $p \in M$, then we obtain a fibre bundle

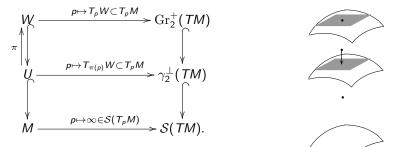
$$\mathcal{S}(E_p) \longrightarrow \mathcal{S}(E) \longrightarrow M.$$

In particular, for the tangent bundle of a *Riemannian* manifold M, we obtain a fibre bundle

$$\mathcal{S}(T_pM) \longrightarrow \mathcal{S}(TM) \longrightarrow M.$$

Image: A math a math

The scanning map approximates each oriented surface $W \subset M$ with its tangent bundle.



First, if $p \in W$, we have the Gauss map. Second, if $\pi: U \to W \subset U$ is a tubular neighbourhood of W, we can identify T_pM as a translation of $T_{\pi(p)}M$, and $T_{\pi(p)}W$ as an affine subspace of T_pM . Third, we may send any other point to the point at infinity (interpreted as the empty subspace).

We have obtained the scanning map:

$$\mathscr{S}_{g} \colon \mathscr{E}_{g}^{\nu}(M) \longrightarrow \Gamma_{c}(\mathscr{S}(TM) \longrightarrow M)$$

 $(W, u) \longmapsto \mathscr{S}_{g}(W, u).$

・ロト ・日子・ ・ ヨト

We have obtained the scanning map:

$$\mathscr{S}_{g} \colon \mathscr{E}_{g}^{\nu}(M) \longrightarrow \Gamma_{c}(\mathscr{S}(TM) \longrightarrow M)$$
$$(W, u) \longmapsto \mathscr{S}_{g}(W, u).$$

Lemma

If M is simply connected and of dimension at least 5, then

 $\pi_0(\Gamma_c(\mathcal{S}(TM) \to M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}.$

・ロト ・回ト ・ヨト ・

We have obtained the scanning map:

$$\mathscr{S}_{g} \colon \mathscr{E}_{g}^{\nu}(M) \longrightarrow \Gamma_{c}(\mathscr{S}(TM) \longrightarrow M)$$
$$(W, u) \longmapsto \mathscr{S}_{g}(W, u).$$

Lemma

If M is simply connected and of dimension at least 5, then

 $\pi_0(\Gamma_c(\mathcal{S}(TM) \to M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}.$

The space of compactly supported genus g sections $\Gamma_c(\mathcal{S}(TM) \to M)_g$ is the union of those components labeled by $H_2(M; \mathbb{Z}) \times \{2 - 2g\}$.

We have obtained the scanning map:

$$\mathscr{S}_{g} \colon \mathscr{E}_{g}^{\nu}(M) \longrightarrow \Gamma_{c}(\mathscr{S}(TM) \longrightarrow M)$$
$$(W, u) \longmapsto \mathscr{S}_{g}(W, u).$$

Lemma

If M is simply connected and of dimension at least 5, then

 $\pi_0(\Gamma_c(\mathcal{S}(TM) \to M)) \cong H_2(M; \mathbb{Z}) \times 2\mathbb{Z}.$

The space of compactly supported genus g sections $\Gamma_c(\mathcal{S}(TM) \to M)_g$ is the union of those components labeled by $H_2(M; \mathbb{Z}) \times \{2 - 2g\}$.

Lemma

The image of \mathscr{S}_g is contained in $\Gamma_c(\mathcal{S}(TM) \to M)_g$.

<ロト < 回 > < 回 > < 回 > < 回 >

Theorem A (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, and $\partial M \neq \emptyset$, then the scanning map

$$\mathscr{S}_g : \mathscr{E}_g^{\nu}(M) \longrightarrow \Gamma_c(\mathscr{S}(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g-1)$.

Theorem C (C. – Randal-Williams)

If M is simply connected and of dimension at least 5, then the scanning map

$$\mathscr{S}_g : \mathscr{E}_g^{\nu}(M) \longrightarrow \Gamma_c(\mathscr{S}(TM) \to M)_g$$

induces an isomorphism in integral homology in degrees $k \leq \frac{2}{3}(g-1)$.

BΣ _n Thm B Nakaoka '60 Thm A Barratt–Priddy '72	$\frac{\mathrm{C}_n(M) := \mathrm{Emb}([n], M) / \Sigma_n}{\mathbf{Thm \ B} McDuff \ '75}$ Thm A McDuff '75
$\begin{array}{c c} & B \mathrm{Diff}^+(\Sigma_g) \\ \hline \mathbf{Thm \ B} & \mathrm{Harer} \ '85 \\ \mathbf{Thm \ A} & \mathrm{Madsen} - \mathrm{Weiss} \ '07 \end{array}$	$\mathcal{E}_{g}(M) := \operatorname{Emb}(\Sigma_{g}, M) / \operatorname{Diff}^{+}(\Sigma_{g})$

Thm B Martin Palmer: Stability for embedded disconnected submanifolds.

・ロト ・日下 ・日下

Resolutions I

Definition

A semi-simplicial space X_{\bullet} is a simplicial space without degeneracies, that is, a functor $X_{\bullet} \colon \Delta_{inj} \to \text{Spaces}$ from the full subcategory $\Delta_{inj} \subset \Delta$ whose morphisms are the inclusions. A maps of semi-simplicial spaces is a natural transformation.

As usual, we denote by X_n the image of [n].

Image: A math a math

Resolutions I

Definition

A semi-simplicial space X_{\bullet} is a simplicial space without degeneracies, that is, a functor $X_{\bullet} \colon \Delta_{inj} \to \text{Spaces}$ from the full subcategory $\Delta_{inj} \subset \Delta$ whose morphisms are the inclusions. A maps of semi-simplicial spaces is a natural transformation.

As usual, we denote by X_n the image of [n].

Definition

An augmented semi-simplicial space is a triple consisting of

- a space X,
- a semi-simplicial space X_• and
- a map $\epsilon: X_0 \to X$ (called augmentation) that equalizes the face maps $\partial_0: X_1 \to X_0$ and $\partial_1: X_1 \to X_0$.

We denote by $\epsilon_i \colon X_i \to X$ the unique composition of face maps and ϵ . A map between augmented semi-simplicial spaces is a pair $(X \to Y, X_{\bullet} \to Y_{\bullet})$ that commutes with the augmentation maps.

An augmented semi-simplicial space (X, X_{ullet}, ϵ) is the same as a map from X_{ullet} to

Definition

A semi-simplicial space X_{\bullet} is a simplicial space without degeneracies, that is, a functor $X_{\bullet} \colon \Delta_{inj} \to \text{Spaces}$ from the full subcategory $\Delta_{inj} \subset \Delta$ whose morphisms are the inclusions. A maps of semi-simplicial spaces is a natural transformation.

Definition

An augmented semi-simplicial space is a triple consisting of

- a space X,
- a semi-simplicial space X_• and
- a map $\epsilon: X_0 \to X$ (called augmentation) that equalizes the face maps $\partial_0: X_1 \to X_0$ and $\partial_1: X_1 \to X_0$.

We denote by $\epsilon_i \colon X_i \to X$ the unique composition of face maps and ϵ . A map between augmented semi-simplicial spaces is a pair $(X \to Y, X_{\bullet} \to Y_{\bullet})$ that commutes with the augmentation maps.

An augmented semi-simplicial space $(X, X_{\bullet}, \epsilon)$ is the same as a map from X_{\bullet} to the constant semi-simplicial space X whose face maps are identities.

Example (Hatcher, Algebraic Topology)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ -set.

Image: A math a math

Example (Hatcher, Algebraic Topology)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ -set.

There is a functor (the *realization*)

 $\|-\|$: Semi-simplicial spaces \longrightarrow Spaces,

that sends the constant semi-simplicial space X to X, hence an augmentation map $X_0 \to X$ induces a map $||X_{\bullet}|| \to X$, which we call *realized augmentation*.

Image: A math a math

Example (Hatcher, Algebraic Topology)

A semi-simplicial space with values in discrete spaces (aka sets) is called a Δ -set.

There is a functor (the *realization*)

 $\|-\|$: Semi-simplicial spaces \longrightarrow Spaces,

that sends the constant semi-simplicial space X to X, hence an augmentation map $X_0 \to X$ induces a map $||X_{\bullet}|| \to X$, which we call *realized augmentation*.

Definition

We say that a semi-simplicial space X_{\bullet} is a resolution of a space X if X_{\bullet} is augmented over X and the realized augmentation is a weak homotopy equivalence. A resolution of a map $f: X \to Y$ is a pair X_{\bullet}, Y_{\bullet} of resolutions of X, Y and a map $f_{\bullet}: X_{\bullet} \to Y_{\bullet}$ that extends the map f.

< ロ > < 同 > < 三 > < 三

Techniques I: How to prove that something is a resolution

Let $(X, X_{\bullet}, \epsilon)$ be an augmented semi-simplicial space.

Lemma

If $x \in X$, then there is a homotopy fibre sequence

 $\|\operatorname{hofib}_{X}(\epsilon_{\bullet})\| \to \|X_{\bullet}\| \to X.$

Image: A math a math

Techniques I: How to prove that something is a resolution

Let $(X, X_{\bullet}, \epsilon)$ be an augmented semi-simplicial space.

Lemma

If $x \in X$, then there is a homotopy fibre sequence

 $\|\operatorname{hofib}_{x}(\epsilon_{\bullet})\| \to \|X_{\bullet}\| \to X.$

We say that $(X, X_{\bullet}, \epsilon)$ is an augmented *topological flag complex* if in addition

- the product map $X_i \to X_0 \times_X \ldots \times_X X_0$ is an open embedding;
- a tuple (x_0, \ldots, x_i) is in $X_i \Leftrightarrow (x_j, x_k) \in X_1$ for all $0 \le j < k \le i$.

Techniques I: How to prove that something is a resolution

Let $(X, X_{\bullet}, \epsilon)$ be an augmented semi-simplicial space.

Lemma

If $x \in X$, then there is a homotopy fibre sequence

 $\|\operatorname{hofib}_{x}(\epsilon_{\bullet})\| \to \|X_{\bullet}\| \to X.$

We say that $(X, X_{\bullet}, \epsilon)$ is an augmented *topological flag complex* if in addition

- the product map $X_i \to X_0 \times_X \ldots \times_X X_0$ is an open embedding;
- a tuple (x_0, \ldots, x_i) is in $X_i \Leftrightarrow (x_j, x_k) \in X_1$ for all $0 \le j < k \le i$.

Lemma (Galatius-Randal-Williams '12)

Suppose in addition that

- $\epsilon: X_0 \to X$ has local sections;
- given any finite collection {x₁,...x_n} ⊂ X₀ in a single fibre of ε over some x ∈ X, there is a x_∞ in that fibre such that each (x_j, x_∞) ∈ X₁.

Then $\|\epsilon_{\bullet}\| \colon \|X_{\bullet}\| \to X$ is a weak homotopy equivalence.

Definition (Palais '60, Cerf '61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \to X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).

Image: A math a math

Definition (Palais '60, Cerf '61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \to X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).

Lemma (Palais '60, Cerf '61)

If X and Y are G-spaces, and $f: X \rightarrow Y$ is G-equivariant and Y is G-locally retractile, then f is a locally trivial fibration.

(日) (同) (三) (三) (三)

Definition (Palais '60, Cerf '61)

If G is a (topological) group acting on X, we say that X is G-locally retractile if, for each point $x \in X$, the orbit map $G \times \{x\} \to X$ that sends $g \mapsto g \cdot x$ has local sections (in the weak sense).

Lemma (Palais '60, Cerf '61)

If X and Y are G-spaces, and $f: X \rightarrow Y$ is G-equivariant and Y is G-locally retractile, then f is a locally trivial fibration.

Proposition (Palais '60, Cerf '61, Lima '63, Binz-Fischer '81)

The space of embeddings of a compact manifold into a manifold M and the space $\mathcal{E}_g(M)$ are Diff(M)-locally retractile.

<ロ> (日) (日) (日) (日) (日)

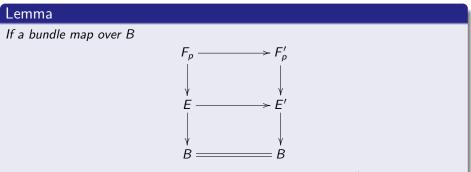
Lemma

If $X_{\bullet} \to X$ is an m-resolution, X_i is homologically (n - i)-connected, and $m \ge n$, then X is homologically n-connected.

Image: A math a math

Lemma

If $X_{\bullet} \to X$ is an m-resolution, X_i is homologically (n - i)-connected, and $m \ge n$, then X is homologically n-connected.



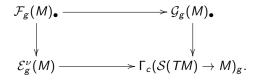
satisfies that for each $p \in B$ the induced map of fibres $F_p \to F'_p$ is homologically k-connected, then the map between total spaces is also homologically k-connected.

Proof: The two steps

construct resolutions of the source and target of the scanning map

 $\mathcal{F}_g(M)_{ullet} \longrightarrow \mathcal{E}_g^{\nu}(M), \qquad \mathcal{G}_g(M)_{ullet} \longrightarrow \Gamma_c(\mathcal{S}(TM) \to M)_g$

and a resolution of the scanning map



・ロト ・聞 と ・ 臣 と ・ 臣 ・

Proof: The two steps

Construct resolutions of the source and target of the scanning map

 $\mathcal{F}_g(M)_{ullet} \longrightarrow \mathcal{E}_g^{\nu}(M), \qquad \mathcal{G}_g(M)_{ullet} \longrightarrow \Gamma_c(\mathcal{S}(TM) \to M)_g$

and a resolution of the scanning map

Onstruct vertical maps (called approximations)

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically $\frac{2}{3}(g-1)$ -connected.

Proof: Resolution of $\mathcal{E}_{g}^{\nu}(M)$

Let $\mathcal{F}_g(M)_i$ be the space of tuples (W, a, d_0, \dots, d_i) where

(W, u) ∈ E^v_g(M)
 d₀,..., d_i: Dⁿ → M are disjoint embeddings of discs such that d_j(0) ∉ U for all j.

These spaces form a semi-simplicial space $\mathcal{F}_g(M)_{\bullet}$ where the *j*th face map forgets the *j*th disc, and there is an augmentation to $\mathcal{E}_{\sigma}^{\nu}(M)$ that forgets all the discs.

Proof: Resolution of $\mathcal{E}_{g}^{\nu}(M)$

Let $\mathcal{F}_g(M)_i$ be the space of tuples (W, a, d_0, \dots, d_i) where

 $(W, u) \in \mathcal{E}_g^{\nu}(M)$

② $d_0, \ldots, d_i : D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all *j*.

These spaces form a semi-simplicial space $\mathcal{F}_g(M)_{\bullet}$ where the *j*th face map forgets the *j*th disc, and there is an augmentation to $\mathcal{E}_{g}^{\nu}(M)$ that forgets all the discs.

Proposition

 $\mathcal{F}_g(M)$ is a resolution of $\mathcal{E}_g^{\nu}(M)$.

Proof: Resolution of $\mathcal{E}_g^{\nu}(M)$

Let $\mathcal{F}_g(M)_i$ be the space of tuples (W, a, d_0, \dots, d_i) where

 $(W, u) \in \mathcal{E}_g^{\nu}(M)$

• $d_0, \ldots, d_i \colon D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all j.

These spaces form a semi-simplicial space $\mathcal{F}_g(M)_{\bullet}$ where the *j*th face map forgets the *j*th disc, and there is an augmentation to $\mathcal{E}_g^{\nu}(M)$ that forgets all the discs.

Proposition

 $\mathcal{F}_g(M)$ is a resolution of $\mathcal{E}_g^{\nu}(M)$.

Proof.

Let $\mathcal{F}'_g(M)_{\bullet}$ the semi-simplicial space defined as $\mathcal{F}_g(M)_{\bullet}$, except that the embeddings are only required to be disjoint at the centers of the discs. Then

- the inclusion $\mathcal{F}_g(M)_{ullet} \subset \mathcal{F}'_g(M)_{ullet}$ is a levelwise equivalence.
- $\mathcal{F}'_g(M)_{\bullet}$ is a topological flag complex augmented over $\mathcal{E}^{\nu}_g(M)$.
- $\mathcal{F}'_g(M)_{\bullet}$ satisfies the conditions of our lemma on topological flag complexes, hence is a resolution.

Proof: Resolution of $\Gamma_c(\mathcal{S}(TM) \to M)_g$

Let $\mathcal{G}_g(M)_i$ be the space of tuples $(f, d_0, \ldots, d_i, h_0, \ldots, h_i)$ where

- $I \in \Gamma_c(\mathcal{S}(TM) \to M)_g;$
- ② $d_0, ..., d_i$: $D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all *j*.
- In the boundary, and such that
 In the boundary, and such that

$$h_j(x,0) = f \circ d_j, \qquad h_j(0,1) = \infty.$$

The *j*th face map forgets d_j and h_j , and there is an augmentation to $\Gamma_c(S(TM) \to M)_g$ by forgetting all discs and homotopies.

(日) (同) (三) (三)

Proof: Resolution of $\Gamma_c(\mathcal{S}(TM) \to M)_g$

Let $\mathcal{G}_g(M)_i$ be the space of tuples $(f, d_0, \ldots, d_i, h_0, \ldots, h_i)$ where

- $I \in \Gamma_c(\mathcal{S}(TM) \to M)_g;$
- ② d_0, \ldots, d_i : $D^n \to M$ are disjoint embeddings of discs such that $d_j(0) \notin U$ for all *j*.
- h_0, \ldots, h_i are smooth homotopies of sections of $d_j^*(\mathcal{S}(TM))$, constant near the boundary, and such that

$$h_j(x,0) = f \circ d_j, \qquad h_j(0,1) = \infty.$$

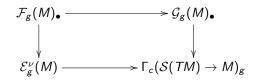
The *j*th face map forgets d_j and h_j , and there is an augmentation to $\Gamma_c(S(TM) \to M)_g$ by forgetting all discs and homotopies.

Proposition

$$\mathcal{G}_g(M)_ullet$$
 is a resolution of $\Gamma_c(\mathcal{S}(\mathcal{T}M) o M)_g$.

Proof.

We can extend the scanning map to a map of resolutions:



by sending a tuple $(W, u, d_0, ..., d_i)$ to $(\mathscr{S}(W, u), d_0, ..., d_i, h_0, ..., h_i)$, where h_j are constant homotopies.

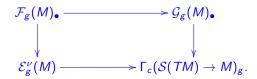
<ロト <回ト < 回ト < 回ト

Proof: First step accomplished

• construct **resolutions** of the source and target of the scanning map

 $\mathcal{F}_g(M)_{\bullet} \longrightarrow \mathcal{E}_g^{\nu}(M), \qquad \mathcal{G}_g(M)_{\bullet} \longrightarrow \Gamma_c(\mathcal{S}(TM) \to M)_g$

and a resolution of the scanning map



Onstruct vertical maps (called approximations)

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically $\frac{2}{3}(g-1)$ -connected.

Forgeting the surface $+\ tubular\ neighbourhood\ or\ the\ section\ defines\ a\ pair\ of\ maps$

$$\begin{array}{ccc} \mathcal{F}_g(M)_i & \mathcal{G}_g(M)_i \\ \\ \downarrow & \downarrow \\ \mathcal{C}_i(M) & \mathcal{C}_i(M), \end{array}$$

to the space $C_i(M) := \operatorname{Emb}([i] \times D^d, M)$.

Image: A math a math

Forgeting the surface W + tubular neighbourhood or the section gives homotopy fibre sequences

to the space $C_i(M) := \text{Emb}([i] \times D^d, M)$. The fibre is taken over the point (d_0, \ldots, d_j) and $\mathbf{p} = \{d_0(0), \ldots, d_i(0)\}$.

Forgeting the surface + tubular neighbourhood or the section defines a pair of ${\sf maps}$

to the space $C_i(M) := \text{Emb}([i] \times D^d, M)$. The fibre is taken over the point (d_0, \ldots, d_j) and $\mathbf{p} = \{d_0(0), \ldots, d_i(0)\}$.

Image: A match a ma

Forgeting the surface + tubular neighbourhood or the section defines a pair of ${\sf maps}$

to the space $C_i(M) := \text{Emb}([i] \times D^d, M)$. The fibre is taken over the point (d_0, \ldots, d_j) and $\mathbf{p} = \{d_0(0), \ldots, d_i(0)\}$.

The scanning map commutes with the map between spaces of *i*-simplices.

< ロ > < 同 > < 三 > < 三

Forgeting the surface + tubular neighbourhood or the section defines a pair of ${\sf maps}$

to the space $C_i(M) := \text{Emb}([i] \times D^d, M)$. The fibre is taken over the point (d_0, \ldots, d_j) and $\mathbf{p} = \{d_0(0), \ldots, d_i(0)\}$.

The scanning map commutes with the map between spaces of *i*-simplices.

Corollary

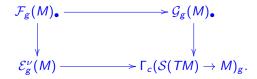
Since the scanning map on the fibres is a homology isomorphism in degrees $* \leq \frac{2}{3}(g-1)$, it follows from a previous lemma that the map between total spaces is a homology isomorphism in those degrees.

Proof: Second step accomplished

 ${\ensuremath{\textcircled{}}}$ construct resolutions of the source and target of the scanning map

 $\mathcal{F}_g(M)_{\bullet} \longrightarrow \mathcal{E}_g^{\nu}(M), \qquad \mathcal{G}_g(M)_{\bullet} \longrightarrow \Gamma_c(\mathcal{S}(TM) \to M)_g$

and a resolution of the scanning map



Construct a map of pairs (called *approximation*)

from a scanning map for which Theorem A applies, and deduce that the bottom map is homologically $\frac{2}{3}(g-1)$ -connected.