Introduction o o	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo

Hochschild Cohomology for Involutive A_{∞} -algebras

Ramsès Fernández i València

Department of Mathematics \sim Swanse
a University

r. fernandez-valencia. 716709 @swansea. ac. uk

 $12^{\rm th}$ December 2013

II Spanish Young Topologists Meeting

Swansea University

(日) (四) (日) (日) (日)

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
0	0000 00 0000000	00 0000

Index

Introduction Motivation of the Problem Main Results

Fundamental Concepts

Involutive Algebras The Involutive Bar Resolution Involutive A_{∞} -algebras

Involutive Hochschild Cohomology

The Complex for Involutive \mathbb{K} -algebras The Complex for Involutive A_{∞} -algebras

Introduction \circ	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Motivation		

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

A 目 > < 目 >

Introduction \circ	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Motivation		

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

In 2011 Christopher Braun showed that cyclic involutive A_{∞} -algebras are equivalent to open Klein TCFTs and computed its homology using an involutive version of Hochschild homology.

< 回 > < 回 > < 回 >

Introduction \circ	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Motivation		

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

In 2011 Christopher Braun showed that cyclic involutive A_{∞} -algebras are equivalent to open Klein TCFTs and computed its homology using an involutive version of Hochschild homology.

Our project in Swansea seeks to generalize Costello's theorem to a G-equivariant setting. Therefore, a good knowledge of both Hochschild homology and cohomology is basic.

(日) (四) (日) (日) (日)

Introduction \circ	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Motivation		

Main Results

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ めんの

II Spanish Young Topologists Meeting

Introduction \circ •	Fundamental Concepts ocoo oo oocooooo	Involutive Hochschild Cohomology oo oooo
Motivation		

Main Results

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the following quasi-isomorphism holds:

$$\Sigma^{-1}\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^\star,\widehat{T}\Sigma^{-1}A^\star)\cong \mathcal{R}\operatorname{Hom}_{iA-\operatorname{Bimod}}(A,M).$$

Introduction \circ •	Fundamental Concepts ooco oo ooococo	Involutive Hochschild Cohomology oo ooco
Motivation		

Main Results

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the following quasi-isomorphism holds:

$$\Sigma^{-1}\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^\star,\widehat{T}\Sigma^{-1}A^\star)\cong \mathcal{R}\operatorname{Hom}_{iA-\operatorname{Bimod}}(A,M).$$

Proposition

For an involutive A_{∞} -algebra A and an involutive A_{∞} -bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{iA-Bimod}}(A, M).$

・ロト ・ 日 ト ・ ヨ ト

Introduction 0 0	Fundamental Concepts • ooo • oo • ooooooo	Involutive Hochschild Cohomology 00 0000
Involutive Algebras		

II Spanish Young Topologists Meeting

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
o	•ooo	oo
o	································	oooo
Involutive Algebras		

An involutive \mathbb{K} -algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K} -linear map (an involution) $^* : A \to A$ satisfying:

A 目 > < 目 >

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
O	$\bullet \circ \circ \circ$	00
O	$\circ \circ $	0000
Involutivo Algobras		

An involutive \mathbb{K} -algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K} -linear map (an involution) $^* : A \to A$ satisfying:

1.
$$(a^*)^* = a;$$

2. $(a \cdot b)^* = b^* \cdot a^*$ for every $a, b \in A$.

Given such an algebra A, an involutive A-bimodule M is an A-bimodule endowed with an involution satisfying

$$(a\cdot m\cdot b)^*=b^*\cdot m^*\cdot a^*.$$

II Spanish Young Topologists Meeting

< 同 > < 回 > < 回

Introduction O O	Fundamental Concepts •••• ••• •••• •••••	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

An involutive \mathbb{K} -algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K} -linear map (an involution) $^* : A \to A$ satisfying:

1.
$$(a^*)^* = a;$$

2. $(a \cdot b)^* = b^* \cdot a^*$ for every $a, b \in A$.

Given such an algebra A, an involutive A-bimodule M is an A-bimodule endowed with an involution satisfying

$$(a \cdot m \cdot b)^* = b^* \cdot m^* \cdot a^*.$$

Given two involutive A-bimodules M, N, a morphism between them is a morphism of $M \xrightarrow{f} N$ that preserves the involution.

Introduction o o	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts 000 00 0000000	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

Let us denote, for an involutive A-bimodule M, the space of involution-preserving maps $M \xrightarrow{d} A$ satisfying the Leibniz rule

$$d(x \cdot y) = d(x) \cdot y + (-1)^{|x| \cdot |d|} \cdot x \cdot d(y)$$

as $\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*).$

Introduction o o	Fundamental Concepts •••• ••• ••• ••• ••• ••• •••	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

Let us denote, for an involutive A-bimodule M, the space of involution-preserving maps $M \xrightarrow{d} A$ satisfying the Leibniz rule

$$d(x \cdot y) = d(x) \cdot y + (-1)^{|x| \cdot |d|} \cdot x \cdot d(y)$$

as $\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*).$

We denote by $\operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^+(A, M)$ the space of homomorphisms $f: A \to M$ which preserve involutions.

(4月) (4日) (4日)

Introduction o o	Fundamental Concepts 0000 00 00000000	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

For an involutive A-bimodule M, giving a derivation m in $\text{Der}^+(\widehat{T}\Sigma^{-1}M^*, \widehat{T}\Sigma^{-1}A^*)$ is equivalent to giving a map

$$\overline{m} \in \bigoplus_n \operatorname{Hom}^+_{\mathbb{K}}(A^{\otimes n}, M),$$

II Spanish Young Topologists Meeting

Swansea University

Introduction o o	Fundamental Concepts ⊙o●O ○○ ○○○○○○○○	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

For an involutive A-bimodule M, giving a derivation m in $\text{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*)$ is equivalent to giving a map

$$\overline{m}\in \bigoplus_n\operatorname{Hom}^+_{\mathbb{K}}(A^{\otimes n},M),$$

which yields the following isomorphism:

$$\Sigma^{-1}\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*) \cong \bigoplus_n \operatorname{Hom}^+_{\mathbb{K}-\operatorname{Mod}}(A^{\otimes n},M).$$

<回ト < 回ト < ヨト

Introduction o o	Fundamental Concepts ⊙o●O ○○ ○○○○○○○○	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

For an involutive A-bimodule M, giving a derivation m in $\text{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*)$ is equivalent to giving a map

$$\overline{m}\in \bigoplus_n\operatorname{Hom}^+_{\mathbb{K}}(A^{\otimes n},M),$$

which yields the following isomorphism:

$$\Sigma^{-1}\operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^*,\widehat{T}\Sigma^{-1}A^*) \cong \bigoplus_n \operatorname{Hom}^+_{\mathbb{K}-\operatorname{Mod}}(A^{\otimes n},M).$$

Let us observe that $\operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^+(A, M)$ can be endowed with the following involution: $f^*(x) = -f(x^*)$.

< 回 > < 回 > < 回 >

Introduction o	Fundamental Concepts	Involutive Hochschild Cohomology oo oooo
Involutive Algebras		

II Spanish Young Topologists Meeting

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
o	OOO	oo
o	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	oooo
Involutive Algebras		

Lemma

For an involution-preserving morphism f, the morphism

$$df(a_0 \otimes \dots \otimes a_n) = a_0 f(a_1 \otimes \dots \otimes a_n) + \sum_{i=0}^{n-1} (-1)^i f(a_0 \otimes \dots \otimes a_i a_{i+1} \otimes \dots \otimes a_n) + (-1)^n f(a_1 \otimes \dots \otimes a_{n-1}) a_n$$

is involution-preserving.

II Spanish Young Topologists Meeting

Introduction O O	Fundamental Concepts ○○○○ ●○ ○○○○○○○	Involutive Hochschild Cohomology 00 0000
The Involutive Bar Resolution		

・ロト・日本・モート ヨー うへの

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts $\circ \circ \circ \circ$ $\circ \circ \circ$ $\circ \circ $	Involutive Hochschild Cohomology oo oooo
The Involutive Bar Resolution		

For an involutive \mathbb{K} -algebra A let us define $\operatorname{Bar}_n(A) := A^{\otimes (n+2)}$.

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts ○○○○ ●○ ○○○○○○○○	Involutive Hochschild Cohomology oo ooco
The Involutive Bar Resolution		

For an involutive \mathbb{K} -algebra A let us define $\operatorname{Bar}_n(A) := A^{\otimes (n+2)}$. Endowed with the involution

$$a^* = (a_0 \otimes \cdots \otimes a_{n+1})^* = a_{n+1}^* \otimes \cdots \otimes a_0^*,$$

 $\operatorname{Bar}_n(A)$ becomes an *iA*-bimodule which can be given the structure of chain complex with a map $\operatorname{Bar}_n(A) \xrightarrow{b_n} \operatorname{Bar}_{n-1}(A)$:

$$b_n(a_0 \otimes \cdots \otimes a_{n+1}) = \sum_{i=0}^n (-1)^i a_0 \otimes \cdots \otimes (a_i a_{i+1}) \otimes \cdots \otimes a_{n+1}.$$

・ロン ・聞と ・ほと・

Introduction O O	Fundamental Concepts ○○○○ ○● ○○○○○○○	Involutive Hochschild Cohomology 00 0000
The Involutive Bar Resolution		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへの

II Spanish Young Topologists Meeting

o o	Fundamental Concepts 0000 0● 0000000	Involutive Hochschild Cohomology OO OOOO
The Latin B. De Lati		

Lemma

For an involutive \mathbb{K} -algebra A, the map

$b_n : \operatorname{Bar}_n(A) \to \operatorname{Bar}_{n-1}(A)$

is involution-preserving.

< 同 > < 回 > < 回

Introduction O O	Fundamental Concepts $\circ \circ \circ \circ$ $\circ \circ $	Involutive Hochschild Cohomology 00 0000
The Involutive Bar Resolution		

Lemma

For an involutive \mathbb{K} -algebra A, the map

$$b_n : \operatorname{Bar}_n(A) \to \operatorname{Bar}_{n-1}(A)$$

is involution-preserving.

Lemma

For an involutive \mathbb{K} -algebra A, Bar(A) is an involutive projective resolution for A.

< 同 > < 回 > < 回

Introduction o o	Fundamental Concepts	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

Involutive A_{∞} -algebras

II Spanish Young Topologists Meeting

	Introduction o o	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras	Involutive $A_\infty\text{-algebras}$		

Involutive A_{∞} -algebras

An involutive A_{∞} -algebra is an involutive graded space A endowed with maps

$$b_n: (SA)^{\otimes n} \to SA, n \ge 1,$$

of degree 1 such that the identity below holds:

$$\sum_{i+j+l=n} b_{i+j+l} \circ (\mathrm{Id}^{\otimes i} \otimes b_j \otimes \mathrm{Id}^{\otimes l}) = 0, \, \forall n \ge 1.$$

II Spanish Young Topologists Meeting

(日) (周) (日) (日)

Introduction	
0	
0	

Fundamental Concepts

Involutive Hochschild Cohomology 00 0000

Involutive A_{∞} -algebras

Morphisms of Involutive A_{∞} -algebras

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 目 ● のへで

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts 0000 00000000	Involutive Hochschild Cohomology oo oooo
Involutive A -algebras		

Morphisms of Involutive A_{∞} -algebras

A morphism of involutive A_{∞} -algebras $f: A_1 \to A_2$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_n: (SA_1)^{\otimes n} \to SA_2, n \geq 1$, such that

$$\sum_{i+j+l=n} f_{i+l+1} \circ (\mathrm{Id}^{\otimes i} \otimes b_j \otimes \mathrm{Id}^{\otimes l}) = \sum_{i_1+\dots+i_s=n} b_s \circ (f_{i_1} \otimes \dots \otimes f_{i_s})$$

(日) (周) (日) (日)

Introduction O O	Fundamental Concepts °°°° °∎°°°°°	Involutive Hochschild Cohomology 00 0000
Involutive A algebras		

Morphisms of Involutive A_{∞} -algebras

A morphism of involutive A_{∞} -algebras $f: A_1 \to A_2$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_n: (SA_1)^{\otimes n} \to SA_2, n \geq 1$, such that

$$\sum_{i+j+l=n} f_{i+l+1} \circ (\mathrm{Id}^{\otimes i} \otimes b_j \otimes \mathrm{Id}^{\otimes l}) = \sum_{i_1+\dots+i_s=n} b_s \circ (f_{i_1} \otimes \dots \otimes f_{i_s})$$

Composition of morphisms of A_{∞} -algebras is given by

$$(f \circ g)_n = \sum_{i_1 + \dots + i_s = n} f_s \circ (g_{i_1} \otimes \dots \otimes g_{i_s}).$$

II Spanish Young Topologists Meeting

・ロト ・四ト ・ヨト

Introduction o o	Fundamental Concepts $\circ \circ \circ \circ$ $\circ \circ \circ \circ$ $\circ \bullet \circ \circ$	Involutive Hochschild Cohomology oo oooo
Involutive A algebras		

Morphisms of Involutive A_{∞} -algebras

A morphism of involutive A_{∞} -algebras $f: A_1 \to A_2$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_n: (SA_1)^{\otimes n} \to SA_2, n \geq 1$, such that

$$\sum_{i+j+l=n} f_{i+l+1} \circ (\mathrm{Id}^{\otimes i} \otimes b_j \otimes \mathrm{Id}^{\otimes l}) = \sum_{i_1+\dots+i_s=n} b_s \circ (f_{i_1} \otimes \dots \otimes f_{i_s})$$

Composition of morphisms of A_{∞} -algebras is given by

$$(f \circ g)_n = \sum_{i_1 + \dots + i_s = n} f_s \circ (g_{i_1} \otimes \dots \otimes g_{i_s}).$$

The identity on SA is defined as $f_1 = \text{Id}$ and $f_n = 0$ for $n \ge 2$.

(日) (四) (日) (日) (日)

Introduction O O	Fundamental Concepts $\circ \circ \circ \circ$ $\circ \circ $	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts $\circ \circ \circ \circ$ $\circ \circ $	Involutive Hochschild Cohomology 00 0000
Involutive A_{∞} -algebras		

For $n = 1, f_1$ induces a morphism of algebras

 $\mathrm{H}_{\bullet}(A_1) \to \mathrm{H}_{\bullet}(A_2).$

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts	Involutive Hochschild Cohomology 00 0000
Involutive A_{∞} -algebras		

For $n = 1, f_1$ induces a morphism of algebras

 $\mathrm{H}_{\bullet}(A_1) \to \mathrm{H}_{\bullet}(A_2).$

We say that $f: A_1 \to A_2$ is an A_∞ -quasi-isomorphism if f_1 is a quasi-isomorphism.

◆□ → ◆圖 → ◆ 国 → ◆ 国 →

Introduction o o	Fundamental Concepts ○○○○ ○○●●○○○○	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

For $n = 1, f_1$ induces a morphism of algebras

 $\mathrm{H}_{\bullet}(A_1) \to \mathrm{H}_{\bullet}(A_2).$

We say that $f: A_1 \to A_2$ is an A_∞ -quasi-isomorphism if f_1 is a quasi-isomorphism.

Proposition

Let A be an involutive A_{∞} -algebra, V a complex and $f_1: A \to V$ a quasi-isomorphism of complexes. Then V admits a structure of involutive A_{∞} -algebra such that f_1 extends to an A_{∞} -quasi-isomorphism $f: A \to V$.

・ロト ・四ト ・ヨト ・ヨト

Introduction O O	Fundamental Concepts $\circ\circ\circ\circ$ $\circ\circ\circ$ \circ	Involutive Hochschild Cohomology 00 0000

Involutive A_{∞} -algebras

Modules and Bimodules Over Involutive A_{∞} -algebras

II Spanish Young Topologists Meeting

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
O	$\circ\circ\circ\circ$	00
O	\circ	0000
Involutive A_{∞} -algebras		

If M is a graded \mathbb{K} -module, an involutive left-module structure for M over an involutive A_{∞} -algebra A is an involution-preserving differential on $BA \otimes M$ over BAcompatible with the differential on BA.

(四)
 (四)

Introduction O O	Fundamental Concepts	Involutive Hochschild Cohomology 00 0000
Involutive A_{∞} -algebras		

If M is a graded \mathbb{K} -module, an involutive left-module structure for M over an involutive A_{∞} -algebra A is an involution-preserving differential on $BA \otimes M$ over BAcompatible with the differential on BA.

An involutive bimodule structure for M over an involutive A_{∞} -algebra A is an involution-preserving differential on the bi-comodule $BA \otimes M \otimes BA$ over BA compatible with the differential on BA.

(日) (四) (日) (日) (日)

Introduction o o	Fundamental Concepts 0000 000000000000000000000000000000	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

II Spanish Young Topologists Meeting

Introduction O O	Fundamental Concepts ○○○○ ○○ ○○○○●○○	Involutive Hochschild Cohomology oo ooco
Involutive A_{∞} -algebras		

The differential on $BA \otimes M$ is given by a series of maps, asked to be involution-preserving, b_n^M :

 $b_n^M : A^{\otimes (n-1)} \otimes M \to M.$

▲ □ ▶ | ▲ □ ▶ | ▲ □ ▶

Introduction O O	Fundamental Concepts ○○○○ ○○ ○○○○●○○	Involutive Hochschild Cohomology oo oooo
Involutive A algebras		

The differential on $BA \otimes M$ is given by a series of maps, asked to be involution-preserving, b_n^M :

$$b_n^M : A^{\otimes (n-1)} \otimes M \to M.$$

For an involutive bimodule the picture is

$$b_n^M: A^{\otimes (i-1)} \otimes M \otimes A^{\otimes (j-1)} \to M.$$

▲ 御 ▶ | ▲ 国 ▶ | ▲ 国

Introduction O O	Fundamental Concepts	Involutive Hochschild Cohomology oo oooo
Involutive A -algebras		

The differential on $BA \otimes M$ is given by a series of maps, asked to be involution-preserving, b_n^M :

$$b_n^M : A^{\otimes (n-1)} \otimes M \to M.$$

For an involutive bimodule the picture is

$$b_n^M : A^{\otimes (i-1)} \otimes M \otimes A^{\otimes (j-1)} \to M.$$

All these maps must satisfy the identity:

$$\sum_{i+j+l=n} b_{i+j+l}^{M} \circ (\mathrm{Id}^{\otimes i} \otimes b_{j}^{M} \otimes \mathrm{Id}^{\otimes j}) = 0.$$

(日) (周) (日) (日)

Introduction o o	Fundamental Concepts 000000000000000000000000000000000000	Involutive Hochschild Cohomology 00 0000
Involutive A_{∞} -algebras		

II Spanish Young Topologists Meeting

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
0 0	0000 00 0000000	00 0000
Involutive A_{∞} -algebras		

A morphism of involutive A_{∞} -bimodules $f: L \to M$ is a given by a collection of maps $f_{i,j}: A^{\otimes (i-1)} \otimes L \otimes A^{\otimes (j-1)} \to M$ satisfying, for $a \in A^{\otimes (i-1)}, l \in L, a' \in A^{\otimes (j-1)}$:

$$f_{i,j}((a,l,a')^*) = (f_{i,j}(a,l,a'))^*$$

and certain compatibility conditions.

・ロト ・四ト ・ヨト ・ヨト

Introduction O O	Fundamental Concepts 000000000000000000000000000000000000	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

II Spanish Young Topologists Meeting

Introduction o o	Fundamental Concepts 0000 0000000	Involutive Hochschild Cohomology oo oooo
Involutive A_{∞} -algebras		

Involutive A_{∞} -bimodules and their respective morphisms form a differential graded category iA_{∞} – Bimod respectively; indeed:

▲ 御 ▶ → ● ▶ → ● ●

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
0 0	0000 00 000000●	00 0000
Involutive A_{∞} -algebras		

Involutive A_{∞} -bimodules and their respective morphisms form a differential graded category iA_{∞} – Bimod respectively; indeed:

For an involutive A_{∞} -algebra A we define $\overline{iA} - \text{Bimod}$ a category with objects involutive A-bimodules and where $\text{Hom}_{\overline{iA}-\text{Bimod}}(M,N)$ is:

 $\underline{\operatorname{Hom}}^{n}(BA\otimes M, BA\otimes N) := \prod_{i\in\mathbb{Z}}\operatorname{Hom}((BA\otimes M)^{i}, (BA\otimes N)^{i+n}).$

・ロト ・雪ト ・油ト ・ 油ト

Introduction o o	Fundamental Concepts 0000 00	Involutive Hochschild Cohomology oo oooo
	000000	
Involutive A_{∞} -algebras		

Involutive A_{∞} -bimodules and their respective morphisms form a differential graded category iA_{∞} – Bimod respectively; indeed:

For an involutive A_{∞} -algebra A we define $\overline{iA} - \text{Bimod}$ a category with objects involutive A-bimodules and where $\text{Hom}_{\overline{iA}-\text{Bimod}}(M,N)$ is:

 $\underline{\operatorname{Hom}}^{n}(BA\otimes M, BA\otimes N) := \prod_{i\in\mathbb{Z}}\operatorname{Hom}((BA\otimes M)^{i}, (BA\otimes N)^{i+n}).$

The differential sends $\{f_i\}_i$ to $\{m^N \circ f^i - (-1)^n f^{i+1} \circ m^M\}_i$.

Introduction	
0	

Fundamental Concepts 0000 00 0000000 The Complex for Involutive $\mathbb{K}\text{-algebras}$

The Involutive Hochschild Cochain Complex

・ロト ・母 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

II Spanish Young Topologists Meeting

Introduction	Fundamental Con
0	0000
0	00
	000000

The Complex for Involutive K-algebras

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{iA-\operatorname{Bimod}}(A, M)$.

II Spanish Young Topologists Meeting

Swansea University

▲ □ ▶ | ▲ □ ▶ | ▲ □ ▶

Introduction O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology $\bullet \circ$ $\circ \circ \circ \circ \circ$
The Complex for Involutive K-	algebras	

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{iA-\operatorname{Bimod}}(A, M)$.

Let us denote with iA – Bimod the category of involutive A-bimodules; since Bar(A) is an involutive resolution for A:

(四)
 (四)

Introduction O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology $\bullet \circ$ $\circ \circ \circ \circ \circ$
The Complex for Involutive K-	algebras	

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{iA-\operatorname{Bimod}}(A, M)$.

Let us denote with iA – Bimod the category of involutive A-bimodules; since Bar(A) is an involutive resolution for A:

$$\mathcal{R} \operatorname{Hom}_{iA-\operatorname{Bimod}}(A, M) \cong \operatorname{Hom}_{iA-\operatorname{Bimod}}(\operatorname{Bar}(A), M) \cong \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^+(A^{\bullet}, M).$$

I	ntroduction
0)

Fundamental Concepts 0000 00 0000000 Involutive Hochschild Cohomology $\circ \bullet$ $\circ \circ \circ \circ \circ$

The Complex for Involutive $\mathbb{K}\text{-algebras}$

Main Result for Involutive Algebras

II Spanish Young Topologists Meeting

Introduction	
0	
0	

The Complex for Involutive $\mathbb K\text{-algebras}$

Main Result for Involutive Algebras

Lemma

The right derived functor is well defined: given two involutive projective resolutions $P \to A \leftarrow Q$ and a left exact functor $iA - Bimod \xrightarrow{\mathcal{F}} iA - Bimod : \mathcal{R}_n(A) = \mathrm{H}^n(\mathcal{F}(P)) \cong \mathrm{H}^n(\mathcal{F}(Q)).$

<日

<</p>

Introduction	
0	
Ó	

The Complex for Involutive $\mathbb K\text{-algebras}$

Main Result for Involutive Algebras

Lemma

The right derived functor is well defined: given two involutive projective resolutions $P \to A \leftarrow Q$ and a left exact functor $iA - Bimod \xrightarrow{\mathcal{F}} iA - Bimod : \mathcal{R}_n(A) = \mathrm{H}^n(\mathcal{F}(P)) \cong \mathrm{H}^n(\mathcal{F}(Q)).$

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the complex $\Sigma^{-1} \operatorname{Der}^+(\widehat{T}\Sigma^{-1}M^*, \widehat{T}\Sigma^{-1}A^*)$ is quasi-isomorphic to $\mathcal{R} \operatorname{Hom}_{iA-Bimod}(A, M)$.

Introduction	
0	
0	

The Complex for Involutive A_{∞} -algebras

The Involutive Hochschild Cochain Complex

II Spanish Young Topologists Meeting

Introduction O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology $\circ \circ$ • • • • • • • • • • • • • • • • • • •

The Complex for Involutive A_{∞} -algebras

The Involutive Hochschild Cochain Complex

The Hochschild cochain complex of an involutive A_{∞} -algebra A with coefficients on an involutive A_{∞} -bimodule M is defined as the \mathbb{K} -vector space

$$C^{n}(A,M) := \prod_{n \ge 0} \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}((SA)^{\otimes n}, M).$$

II Spanish Young Topologists Meeting

Swansea University

A (10) A (10)

Introduction o o	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology ○○ ○●○○
The Complex for Invo	blutive A_{∞} -algebras	

Technicalities

II Spanish Young Topologists Meeting

Introduction O O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology ○○ ○●○○		
The Complex for Involutive A_{∞} -algebras				

Technicalities

Lemma

For an involutive A_{∞} -algebra A there is a natural involution-preserving A_{∞} -quasi-isomorphism, then a homotopy equivalence, of involutive A_{∞} -bimodules $B(A, A, A) \to A$.

< 同 > < 回 > < 回

Introduction O O	Fundamental Concepts ooco oo oocoocoo	Involutive Hochschild Cohomology $\circ \circ$ $\circ \bullet \circ \circ \circ$		
The Complex for Involutive A_{∞} -algebras				

Technicalities

Lemma

For an involutive A_{∞} -algebra A there is a natural involution-preserving A_{∞} -quasi-isomorphism, then a homotopy equivalence, of involutive A_{∞} -bimodules $B(A, A, A) \to A$.

Lemma

Let B be an A_{∞} -algebra. If P, Q are homotopy equivalent as involutive B-bimodules then, for every involutive B-bimodule A, the following quasi-isomorphism holds:

$$\operatorname{Hom}_{\overline{iB-\operatorname{Bimod}}}(P,A)\cong\operatorname{Hom}_{\overline{iB-\operatorname{Bimod}}}(Q,A).$$

- 4 周 ト - 4 ヨ ト - 4 ヨ ト

Introduction O O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology ○○ ○○●○

The Complex for Involutive A_{∞} -algebras

Main Result for Involutive A_{∞} -algebras

・ロト ・ 母 ・ ・ 国 ・ ・ 国 ・ うへぐ

II Spanish Young Topologists Meeting

Introduction	Fundamental Concepts	Involutive Hochschild Cohomology
0	0000 00 000000	00 00●0

The Complex for Involutive A_{∞} -algebras

Main Result for Involutive A_{∞} -algebras

Proposition

For an involutive A_{∞} -algebra A and an involutive A_{∞} -bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{iA-Bimod}}(A, M)$.

Introduction O O	Fundamental Concepts 0000 00 0000000	Involutive Hochschild Cohomology $\circ \circ$ $\circ \circ $
The Complex for Involutive	A	

Main Result for Involutive A_{∞} -algebras

Proposition

For an involutive A_{∞} -algebra A and an involutive A_{∞} -bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{iA-Bimod}}(A, M)$.

Proof.

$$\prod_{n\geq 0} \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^+((SA)^{\otimes n}, M) \cong \operatorname{Hom}_{\overline{iA-\operatorname{Bimod}}}(B(A, A, A), M)$$
$$\cong \operatorname{Hom}_{\overline{iA-\operatorname{Bimod}}}(A, M).$$

Diolch yn fawr

Prifysgol Abertawe Swansea University

<ロト <四ト <注入 <注下 <注下 <