Hochschild Cohomology for
 Involutive A_{∞}-algebras

Ramsès Fernández i València
Department of Mathematics ~ Swansea University
r.fernandez-valencia.716709@swansea.ac.uk

$$
12^{\text {th }} \text { December } 2013
$$

Index

Introduction
Motivation of the Problem
Main Results
Fundamental Concepts
Involutive Algebras
The Involutive Bar Resolution
Involutive A_{∞}-algebras
Involutive Hochschild Cohomology
The Complex for Involutive \mathbb{K}-algebras
The Complex for Involutive A_{∞}-algebras

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

In 2011 Christopher Braun showed that cyclic involutive A_{∞}-algebras are equivalent to open Klein TCFTs and computed its homology using an involutive version of Hochschild homology.

Motivation of the Problem

Kevin Costello in 2007 classifies oriented Open-closed TCFTs and computes its homology by stating that it is the Hochschild homology of the open state sector of the theory.

In 2011 Christopher Braun showed that cyclic involutive A_{∞}-algebras are equivalent to open Klein TCFTs and computed its homology using an involutive version of Hochschild homology.

Our project in Swansea seeks to generalize Costello's theorem to a G-equivariant setting. Therefore, a good knowledge of both Hochschild homology and cohomology is basic.

Main Results

Main Results

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the following quasi-isomorphism holds:

$$
\Sigma^{-1} \operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{\star}, \widehat{T} \Sigma^{-1} A^{\star}\right) \cong \mathcal{R} \operatorname{Hom}_{i A-\text { Bimod }}(A, M) .
$$

Main Results

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the following quasi-isomorphism holds:

$$
\Sigma^{-1} \operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{\star}, \widehat{T} \Sigma^{-1} A^{\star}\right) \cong \mathcal{R} \operatorname{Hom}_{i A-\text { Bimod }}(A, M) .
$$

Proposition

For an involutive A_{∞}-algebra A and an involutive A_{∞}-bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{i A-\text { Bimod }}}(A, M)$.

Involutive Algebras

Involutive Algebras

An involutive \mathbb{K}-algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K}-linear map (an involution) ${ }^{*}: A \rightarrow A$ satisfying:

1. $\left(a^{*}\right)^{*}=a$;
2. $(a \cdot b)^{*}=b^{*} \cdot a^{*}$ for every $a, b \in A$.

Involutive Algebras

An involutive \mathbb{K}-algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K}-linear map (an involution) ${ }^{*}: A \rightarrow A$ satisfying:

1. $\left(a^{*}\right)^{*}=a$;
2. $(a \cdot b)^{*}=b^{*} \cdot a^{*}$ for every $a, b \in A$.

Given such an algebra A, an involutive A-bimodule M is an A-bimodule endowed with an involution satisfying

$$
(a \cdot m \cdot b)^{*}=b^{*} \cdot m^{*} \cdot a^{*} .
$$

Involutive Algebras

An involutive \mathbb{K}-algebra A is an algebra over a field \mathbb{K} endowed with a \mathbb{K}-linear map (an involution) ${ }^{*}: A \rightarrow A$ satisfying:

1. $\left(a^{*}\right)^{*}=a$;
2. $(a \cdot b)^{*}=b^{*} \cdot a^{*}$ for every $a, b \in A$.

Given such an algebra A, an involutive A-bimodule M is an A-bimodule endowed with an involution satisfying

$$
(a \cdot m \cdot b)^{*}=b^{*} \cdot m^{*} \cdot a^{*} .
$$

Given two involutive A-bimodules M, N, a morphism between them is a morphism of $M \xrightarrow{f} N$ that preserves the involution.

Involutive Algebras

Involutive Algebras

Let us denote, for an involutive A-bimodule M, the space of involution-preserving maps $M \xrightarrow{d} A$ satisfying the Leibniz rule

$$
d(x \cdot y)=d(x) \cdot y+(-1)^{|x| \cdot|d|} \cdot x \cdot d(y)
$$

as $\operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$.

Involutive Algebras

Let us denote, for an involutive A-bimodule M, the space of involution-preserving maps $M \xrightarrow{d} A$ satisfying the Leibniz rule

$$
d(x \cdot y)=d(x) \cdot y+(-1)^{|x| \cdot|d|} \cdot x \cdot d(y)
$$

as $\operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$.
We denote by $\operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}(A, M)$ the space of homomorphisms $f: A \rightarrow M$ which preserve involutions.

Involutive Algebras

Involutive Algebras

For an involutive A-bimodule M, giving a derivation m in $\operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$ is equivalent to giving a map

$$
\bar{m} \in \bigoplus \operatorname{Hom}_{\mathbb{K}}^{+}\left(A^{\otimes n}, M\right),
$$

Involutive Algebras

For an involutive A-bimodule M, giving a derivation m in $\operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$ is equivalent to giving a map

$$
\bar{m} \in \bigoplus \operatorname{Hom}_{\mathbb{K}}^{+}\left(A^{\otimes n}, M\right),
$$

which yields the following isomorphism:

$$
\Sigma^{-1} \operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right) \cong \bigoplus_{n} \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}\left(A^{\otimes n}, M\right) .
$$

Involutive Algebras

For an involutive A-bimodule M, giving a derivation m in $\operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$ is equivalent to giving a map

$$
\bar{m} \in \bigoplus \operatorname{Hom}_{\mathbb{K}}^{+}\left(A^{\otimes n}, M\right)
$$

which yields the following isomorphism:

$$
\Sigma^{-1} \operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right) \cong \bigoplus_{n} \operatorname{Hom}_{\mathbb{K}}^{+}-\mathrm{Mod}\left(A^{\otimes n}, M\right) .
$$

Let us observe that $\operatorname{Hom}_{\mathbb{K}}^{+}{ }_{\operatorname{Mod}}(A, M)$ can be endowed with the following involution: $f^{\star}(x)=-f\left(x^{\star}\right)$.

Involutive Algebras

Involutive Algebras

Lemma

For an involution-preserving morphism f, the morphism

$$
\begin{aligned}
d f\left(a_{0} \otimes \ldots \otimes a_{n}\right) & =a_{0} f\left(a_{1} \otimes \ldots \otimes a_{n}\right) \\
& +\sum_{i=0}^{n-1}(-1)^{i} f\left(a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{n}\right) \\
& +(-1)^{n} f\left(a_{1} \otimes \cdots \otimes a_{n-1}\right) a_{n}
\end{aligned}
$$

is involution-preserving.

Involutive Bar Resolution

Involutive Bar Resolution

For an involutive \mathbb{K}-algebra A let us define $\operatorname{Bar}_{n}(A):=A^{\otimes(n+2)}$.

Involutive Bar Resolution

For an involutive \mathbb{K}-algebra A let us define $\operatorname{Bar}_{n}(A):=A^{\otimes(n+2)}$. Endowed with the involution

$$
a^{*}=\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)^{*}=a_{n+1}^{*} \otimes \cdots \otimes a_{0}^{*},
$$

$\operatorname{Bar}_{n}(A)$ becomes an $i A$-bimodule which can be given the structure of chain complex with a map $\operatorname{Bar}_{n}(A) \xrightarrow{b_{n}} \operatorname{Bar}_{n-1}(A)$:

$$
b_{n}\left(a_{0} \otimes \cdots \otimes a_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i} a_{0} \otimes \cdots \otimes\left(a_{i} a_{i+1}\right) \otimes \cdots \otimes a_{n+1}
$$

Involutive Bar Resolution

Involutive Bar Resolution

Lemma
For an involutive \mathbb{K}-algebra A, the map

$$
b_{n}: \operatorname{Bar}_{n}(A) \rightarrow \operatorname{Bar}_{n-1}(A)
$$

is involution-preserving.

Involutive Bar Resolution

Lemma
For an involutive \mathbb{K}-algebra A, the map

$$
b_{n}: \operatorname{Bar}_{n}(A) \rightarrow \operatorname{Bar}_{n-1}(A)
$$

is involution-preserving.
Lemma
For an involutive \mathbb{K}-algebra $A, \operatorname{Bar}(A)$ is an involutive projective resolution for A.

Involutive A_{∞}-algebras

Involutive A_{∞}-algebras

An involutive A_{∞}-algebra is an involutive graded space A endowed with maps

$$
b_{n}:(S A)^{\otimes n} \rightarrow S A, n \geq 1,
$$

of degree 1 such that the identity below holds:

$$
\sum_{i+j+l=n} b_{i+j+l} \circ\left(\operatorname{Id}^{\otimes i} \otimes b_{j} \otimes \operatorname{Id}^{\otimes l}\right)=0, \forall n \geq 1
$$

Morphisms of Involutive A_{∞}-algebras

Morphisms of Involutive A_{∞}-algebras

A morphism of involutive A_{∞}-algebras $f: A_{1} \rightarrow A_{2}$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_{n}:\left(S A_{1}\right)^{\otimes n} \rightarrow S A_{2}, n \geq 1$, such that

$$
\sum_{i+j+l=n} f_{i+l+1} \circ\left(\operatorname{Id}^{\otimes i} \otimes b_{j} \otimes \operatorname{Id}^{\otimes l}\right)=\sum_{i_{1}+\cdots+i_{s}=n} b_{s} \circ\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
$$

Morphisms of Involutive A_{∞}-algebras

A morphism of involutive A_{∞}-algebras $f: A_{1} \rightarrow A_{2}$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_{n}:\left(S A_{1}\right)^{\otimes n} \rightarrow S A_{2}, n \geq 1$, such that

$$
\sum_{i+j+l=n} f_{i+l+1} \circ\left(\operatorname{Id}^{\otimes i} \otimes b_{j} \otimes \operatorname{Id}^{\otimes l}\right)=\sum_{i_{1}+\cdots+i_{s}=n} b_{s} \circ\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
$$

Composition of morphisms of A_{∞}-algebras is given by

$$
(f \circ g)_{n}=\sum_{i_{1}+\cdots+i_{s}=n} f_{s} \circ\left(g_{i_{1}} \otimes \cdots \otimes g_{i_{s}}\right) .
$$

Morphisms of Involutive A_{∞}-algebras

A morphism of involutive A_{∞}-algebras $f: A_{1} \rightarrow A_{2}$ is given by an a series of homogeneous involution-preserving maps of degree zero $f_{n}:\left(S A_{1}\right)^{\otimes n} \rightarrow S A_{2}, n \geq 1$, such that

$$
\sum_{i+j+l=n} f_{i+l+1} \circ\left(\operatorname{Id}^{\otimes i} \otimes b_{j} \otimes \operatorname{Id}^{\otimes l}\right)=\sum_{i_{1}+\cdots+i_{s}=n} b_{s} \circ\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{s}}\right)
$$

Composition of morphisms of A_{∞}-algebras is given by

$$
(f \circ g)_{n}=\sum_{i_{1}+\cdots+i_{s}=n} f_{s} \circ\left(g_{i_{1}} \otimes \cdots \otimes g_{i_{s}}\right) .
$$

The identity on $S A$ is defined as $f_{1}=\mathrm{Id}$ and $f_{n}=0$ for $n \geq 2$.

A_{∞}-quasi-isomorphisms

A_{∞}-quasi-isomorphisms

For $n=1, f_{1}$ induces a morphism of algebras

$$
\mathrm{H} \cdot\left(A_{1}\right) \rightarrow \mathrm{H} \cdot\left(A_{2}\right) .
$$

A_{∞}-quasi-isomorphisms

For $n=1, f_{1}$ induces a morphism of algebras

$$
\mathrm{H}_{\bullet}\left(A_{1}\right) \rightarrow \mathrm{H} \cdot\left(A_{2}\right) .
$$

We say that $f: A_{1} \rightarrow A_{2}$ is an A_{∞}-quasi-isomorphism if f_{1} is a quasi-isomorphism.

A_{∞}-quasi-isomorphisms

For $n=1, f_{1}$ induces a morphism of algebras

$$
\mathrm{H}_{\bullet}\left(A_{1}\right) \rightarrow \mathrm{H}_{\bullet}\left(A_{2}\right) .
$$

We say that $f: A_{1} \rightarrow A_{2}$ is an A_{∞}-quasi-isomorphism if f_{1} is a quasi-isomorphism.

Proposition
Let A be an involutive A_{∞}-algebra, V a complex and $f_{1}: A \rightarrow V$ a quasi-isomorphism of complexes. Then V admits a structure of involutive A_{∞}-algebra such that f_{1} extends to an A_{∞}-quasi-isomorphism $f: A \rightarrow V$.

Modules and Bimodules Over Involutive A_{∞}-algebras

Modules and Bimodules Over Involutive A_{∞}-algebras

If M is a graded \mathbb{K}-module, an involutive left-module structure for M over an involutive A_{∞}-algebra A is an involution-preserving differential on $B A \otimes M$ over $B A$ compatible with the differential on $B A$.

Modules and Bimodules Over Involutive A_{∞}-algebras

If M is a graded \mathbb{K}-module, an involutive left-module structure for M over an involutive A_{∞}-algebra A is an involution-preserving differential on $B A \otimes M$ over $B A$ compatible with the differential on $B A$.

An involutive bimodule structure for M over an involutive A_{∞}-algebra A is an involution-preserving differential on the bi-comodule $B A \otimes M \otimes B A$ over $B A$ compatible with the differential on $B A$.

Modules and Bimodules Over Involutive A_{∞}-algebras

Modules and Bimodules Over Involutive A_{∞}-algebras

 The differential on $B A \otimes M$ is given by a series of maps, asked to be involution-preserving, b_{n}^{M} :$$
b_{n}^{M}: A^{\otimes(n-1)} \otimes M \rightarrow M
$$

Modules and Bimodules Over Involutive A_{∞}-algebras

 The differential on $B A \otimes M$ is given by a series of maps, asked to be involution-preserving, b_{n}^{M} :$$
b_{n}^{M}: A^{\otimes(n-1)} \otimes M \rightarrow M
$$

For an involutive bimodule the picture is

$$
b_{n}^{M}: A^{\otimes(i-1)} \otimes M \otimes A^{\otimes(j-1)} \rightarrow M
$$

Modules and Bimodules Over Involutive A_{∞}-algebras

 The differential on $B A \otimes M$ is given by a series of maps, asked to be involution-preserving, b_{n}^{M} :$$
b_{n}^{M}: A^{\otimes(n-1)} \otimes M \rightarrow M
$$

For an involutive bimodule the picture is

$$
b_{n}^{M}: A^{\otimes(i-1)} \otimes M \otimes A^{\otimes(j-1)} \rightarrow M
$$

All these maps must satisfy the identity:

$$
\sum_{i+j+l=n} b_{i+j+l}^{M} \circ\left(\mathrm{Id}^{\otimes i} \otimes b_{j}^{M} \otimes \mathrm{Id}^{\otimes j}\right)=0
$$

Morphisms Between Bimodules

Morphisms Between Bimodules

A morphism of involutive A_{∞}-bimodules $f: L \rightarrow M$ is a given by a collection of maps $f_{i, j}: A^{\otimes(i-1)} \otimes L \otimes A^{\otimes(j-1)} \rightarrow M$ satisfying, for $a \in A^{\otimes(i-1)}, l \in L, a^{\prime} \in A^{\otimes(j-1)}$:

$$
f_{i, j}\left(\left(a, l, a^{\prime}\right)^{\star}\right)=\left(f_{i, j}\left(a, l, a^{\prime}\right)\right)^{\star}
$$

and certain compatibility conditions.

Morphisms Between Bimodules

Morphisms Between Bimodules

Involutive A_{∞}-bimodules and their respective morphisms form a differential graded category $i A_{\infty}$ - Bimod respectively; indeed:

Morphisms Between Bimodules

Involutive A_{∞}-bimodules and their respective morphisms form a differential graded category $i A_{\infty}$ - Bimod respectively; indeed:

For an involutive A_{∞}-algebra A we define $\overline{i A-\operatorname{Bimod}}$ a category with objects involutive A-bimodules and where $\operatorname{Hom}_{\overline{i A-\text { Bimod }}}(M, N)$ is:
$\underline{\operatorname{Hom}}^{n}(B A \otimes M, B A \otimes N):=\prod_{i \in \mathbb{Z}} \operatorname{Hom}\left((B A \otimes M)^{i},(B A \otimes N)^{i+n}\right)$.

Morphisms Between Bimodules

Involutive A_{∞}-bimodules and their respective morphisms form a differential graded category $i A_{\infty}$ - Bimod respectively; indeed:

For an involutive A_{∞}-algebra A we define $\overline{i A-\operatorname{Bimod}}$ a category with objects involutive A-bimodules and where $\operatorname{Hom}_{i A-\text { Bimod }}(M, N)$ is:
$\underline{\operatorname{Hom}}^{n}(B A \otimes M, B A \otimes N):=\prod_{i \in \mathbb{Z}} \operatorname{Hom}\left((B A \otimes M)^{i},(B A \otimes N)^{i+n}\right)$.
The differential sends $\left\{f_{i}\right\}_{i}$ to $\left\{m^{N} \circ f^{i}-(-1)^{n} f^{i+1} \circ m^{M}\right\}_{i}$.

The Involutive Hochschild Cochain Complex

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{i A-\operatorname{Bimod}}(A, M)$.

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{i A-\operatorname{Bimod}}(A, M)$.

Let us denote with $i A$ - Bimod the category of involutive A-bimodules; since $\operatorname{Bar}(A)$ is an involutive resolution for A :

The Involutive Hochschild Cochain Complex

The involutive Hochschild cohomology of A with coefficients in M is the derived functor $\mathcal{R} \operatorname{Hom}_{i A-\operatorname{Bimod}}(A, M)$.

Let us denote with $i A$ - Bimod the category of involutive A-bimodules; since $\operatorname{Bar}(A)$ is an involutive resolution for A :

$$
\begin{aligned}
\mathcal{R} \operatorname{Hom}_{i A-\operatorname{Bimod}}(A, M) & \cong \operatorname{Hom}_{i A-\operatorname{Bimod}}(\operatorname{Bar}(A), M) \\
& \cong \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}\left(A^{\bullet}, M\right)
\end{aligned}
$$

Main Result for Involutive Algebras

Main Result for Involutive Algebras

Lemma
The right derived functor is well defined: given two involutive projective resolutions $P \rightarrow A \leftarrow Q$ and a left exact functor $i A-$ Bimod $\xrightarrow{\mathcal{F}} i A-$ Bimod $: \mathcal{R}_{n}(A)=\mathrm{H}^{n}(\mathcal{F}(P)) \cong \mathrm{H}^{n}(\mathcal{F}(Q))$.

Main Result for Involutive Algebras

Lemma

The right derived functor is well defined: given two involutive projective resolutions $P \rightarrow A \leftarrow Q$ and a left exact functor $i A-\operatorname{Bimod} \xrightarrow{\mathcal{F}} i A-\operatorname{Bimod}: \mathcal{R}_{n}(A)=\mathrm{H}^{n}(\mathcal{F}(P)) \cong \mathrm{H}^{n}(\mathcal{F}(Q))$.

Proposition

For an involutive associative algebra A and an involutive A-bimodule M, the complex $\Sigma^{-1} \operatorname{Der}^{+}\left(\widehat{T} \Sigma^{-1} M^{*}, \widehat{T} \Sigma^{-1} A^{*}\right)$ is quasi-isomorphic to $\mathbb{R} \operatorname{Hom}_{i A-\text { Bimod }}(A, M)$.

The Involutive Hochschild Cochain Complex

The Involutive Hochschild Cochain Complex

The Hochschild cochain complex of an involutive A_{∞}-algebra A with coeficients on an involutive A_{∞}-bimodule M is defined as the \mathbb{K}-vector space

$$
C^{n}(A, M):=\prod_{n \geq 0} \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}\left((S A)^{\otimes n}, M\right)
$$

Technicalities

Technicalities

Lemma

For an involutive A_{∞}-algebra A there is a natural involution-preserving A_{∞}-quasi-isomorphism, then a homotopy equivalence, of involutive A_{∞}-bimodules $B(A, A, A) \rightarrow A$.

Technicalities

Lemma

For an involutive A_{∞}-algebra A there is a natural involution-preserving A_{∞}-quasi-isomorphism, then a homotopy equivalence, of involutive A_{∞}-bimodules $B(A, A, A) \rightarrow A$.

Lemma

Let B be an A_{∞}-algebra. If P, Q are homotopy equivalent as involutive B-bimodules then, for every involutive B-bimodule A, the following quasi-isomorphism holds:

$$
\operatorname{Hom}_{\overline{i B-B i m o d}}(P, A) \cong \operatorname{Hom}_{\overline{i B-B i m o d}}(Q, A)
$$

Main Result for Involutive A_{∞}-algebras

Main Result for Involutive A_{∞}-algebras

Proposition
For an involutive A_{∞}-algebra A and an involutive A_{∞}-bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{i A-\text { Bimod }}}(A, M)$.

Main Result for Involutive A_{∞}-algebras

Proposition
For an involutive A_{∞}-algebra A and an involutive A_{∞}-bimodule M we have: $C^{\bullet}(A, M) \cong \operatorname{Hom}_{\overline{i A-B i m o d}}(A, M)$.

Proof.
$\prod \operatorname{Hom}_{\mathbb{K}-\operatorname{Mod}}^{+}\left((S A)^{\otimes n}, M\right) \cong \operatorname{Hom}_{\overline{i A-\operatorname{Bimod}}}(B(A, A, A), M)$
$n \geq 0$
$\cong \operatorname{Hom}_{\overline{i A-\text { Bimod }}}(A, M)$.

Diolch yn fawr

Prifysgol Abertawe Swansea University

