Introduction to the Catastrophe Theory

Juan Margalef Bentabol

Barcelona

II Spanish Young Topologists Meeting

Part I: A bit of Mechanics

Lagrangian Systems

- We will consider conservative mechanical systems with positional depending potential energy $V(\bar{r})$.

Lagrangian Systems

- We will consider conservative mechanical systems with positional depending potential energy $V(\bar{r})$.
- We are interested in the statics and not in the dynamics.

Lagrangian Systems

- We will consider conservative mechanical systems with positional depending potential energy $V(\bar{r})$.
- We are interested in the statics and not in the dynamics.
- The extrema of the potential V gives the equilibria of the system.

Part II: Zeeman's Catastrophe Machine

Zeeman's Machine

Zeeman's Machine

Zeeman's Machine

The potential energy is given by:

$$
V=\frac{k\left(L_{1}-2\right)^{2}}{2}+\frac{k\left(L_{2}-2\right)^{2}}{2}
$$

With generalized coordinates:

$$
V_{(x, y)}(\theta)=\frac{k}{2}\left[\left(2-\sqrt{(c \theta-x)^{2}+(s \theta-y)^{2}}\right)^{2}+\left(2-\sqrt{(c \theta)^{2}+(s \theta+4)^{2}}\right)^{2}\right]
$$

Zeeman's Machine

The potential energy is given by:

$$
V=\frac{k\left(L_{1}-2\right)^{2}}{2}+\frac{k\left(L_{2}-2\right)^{2}}{2}
$$

With generalized coordinates:

$$
V_{(x, y)}(\theta)=\frac{k}{2}\left[\left(2-\sqrt{(c \theta-x)^{2}+(s \theta-y)^{2}}\right)^{2}+\left(2-\sqrt{(c \theta)^{2}+(s \theta+4)^{2}}\right)^{2}\right]
$$

- (x, y) can be considered as control parameters. $V_{(x, y)}$ biparametric family of potentials.
- For every (x, y) we look for the extrema of $V_{(x, y)}$, i.e. θ_{0} such that $V_{(x, y)}^{\prime}\left(\theta_{0}\right)=0$.

Zeeman's Machine

Questions

Zeeman's Machine

Questions

- Does this extremum exist?

Zeeman's Machine

Questions

- Does this extremum exist?
- Is it unique?

Zeeman's Machine

Questions

- Does this extremum exist?
- Is it unique?
- Do the answers depend on (x, y) ?

Zeeman's Machine

Nonlinear dynamics, Drexel University: http://lagrange.physics.drexel.edu/flash/zcm/

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.
The catastrophe theory is named after such behaviours.

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.
The catastrophe theory is named after such behaviours.

Some parameters (x, y) admit two minima, which one is chosen depends on the path over the parameter space (not necessarily the absolute one!).

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.
The catastrophe theory is named after such behaviours.

Some parameters (x, y) admit two minima, which one is chosen depends on the path over the parameter space (not necessarily the absolute one!).

This behaviour is known as hysteresis.

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.
The catastrophe theory is named after such behaviours.

Some parameters (x, y) admit two minima, which one is chosen depends on the path over the parameter space (not necessarily the absolute one!).

This behaviour is known as hysteresis.

There are loops over the parameter space that lead smoothly to different equilibria.

Zeeman's Machine - Properties

Despite the smoothness of V, the behaviour is discontinuous.
The catastrophe theory is named after such behaviours.

Some parameters (x, y) admit two minima, which one is chosen depends on the path over the parameter space (not necessarily the absolute one!).

This behaviour is known as hysteresis.

There are loops over the parameter space that lead smoothly to different equilibria.

This behaviour is known as divergence.

Zeeman's Machine - Simplification

V is hard to work with, but we can obtain an "alternative potential" (canonical form) \bar{V}, that closed to a degenerate critical point, behaves like V :

$$
\bar{V}_{(x, y)}(\theta)=a_{0} \theta^{4}+x \theta+y \theta^{2}
$$

Zeeman's Machine - Simplification

V is hard to work with, but we can obtain an "alternative potential" (canonical form) \bar{V}, that closed to a degenerate critical point, behaves like V :

$$
\bar{V}_{(x, y)}(\theta)=a_{0} \theta^{4}+x \theta+y \theta^{2}
$$

Remark

It is proven that the relevant information is preserved.

Zeeman's Machine - Study

Definition

The surface of equilibria:

$$
M_{\bar{V}}=\left\{(x, y, \theta) / \bar{V}_{(x, y)}^{\prime}(\theta)=0\right\}=\left\{(x, y, \theta) / 4 a_{0} \theta^{3}+x+2 y \theta=0\right\}
$$

Zeeman's Machine - Study

Definition

The surface of equilibria:

$$
M_{\bar{V}}=\left\{(x, y, \theta) / \bar{V}_{(x, y)}^{\prime}(\theta)=0\right\}=\left\{(x, y, \theta) / 4 a_{0} \theta^{3}+x+2 y \theta=0\right\}
$$

Zeeman's Machine - Study

Key Point

We want to know when the behaviour changes i.e. when a minimum appears/disappears.

Zeeman's Machine - Study

Zeeman's Machine - Study

Zeeman's Machine - Study

Definition

The set of catastrophes:

$$
C_{\bar{V}}=\left\{(x, y, \theta) / \bar{V}_{(x, y)}^{\prime}(\theta)=0 \quad \text { y } \quad \bar{V}_{(x, y)}^{\prime \prime}(\theta)=0\right\}
$$

Zeeman's Machine - Study

Definition

The set of catastrophes:

$$
C_{\bar{V}}=\left\{(x, y, \theta) / \bar{V}_{(x, y)}^{\prime}(\theta)=0 \quad \text { y } \quad \bar{V}_{(x, y)}^{\prime \prime}(\theta)=0\right\}
$$

Definition

Its projection over the plane $x y$ defines the bifurcation set:

$$
B_{\bar{V}}=\left\{(x, y) \in \mathbb{R}^{2} /(x, y, \theta) \in C_{\bar{V}} \text { for some } \theta\right\}
$$

The projection $\chi_{\bar{v}}: C_{\bar{V}} \rightarrow B_{\bar{V}}$ is called catastrophe germ.

Zeeman's Machine - Study

Definition

The set of catastrophes:

$$
C_{\bar{V}}=\left\{(x, y, \theta) / \bar{V}_{(x, y)}^{\prime}(\theta)=0 \quad \text { y } \quad \bar{V}_{(x, y)}^{\prime \prime}(\theta)=0\right\}
$$

Definition

Its projection over the plane $x y$ defines the bifurcation set:

$$
B_{\bar{V}}=\left\{(x, y) \in \mathbb{R}^{2} /(x, y, \theta) \in C_{\bar{V}} \text { for some } \theta\right\}
$$

The projection $\chi_{\bar{v}}: C_{\bar{V}} \rightarrow B_{\bar{V}}$ is called catastrophe germ.

For the Zeeman's machine we obtain a cusp:

$$
B_{\bar{V}}=\left\{\left(8 \lambda^{3},-6 \lambda^{2}\right)\right\}
$$

Zeeman's Machine - Study

Zeeman's Machine - Study

Zeeman's Machine - Study

Remarks

- The bifurcation set $B_{\bar{V}}$ is not a smooth manifold.

Zeeman's Machine - Study

Remarks

- The bifurcation set $B_{\bar{V}}$ is not a smooth manifold.
- $C_{\bar{V}}$ and $B_{\bar{V}}$ allow us to understand the pathologies of the Zeeman's catastrophe machine.

Zeeman's Machine - Study

Zeeman's Machine - Study

Globally there are four linked cusps, with two minima and two maxima in the interior region.

Part III: A bit of Theory

Theory - Germs

Definition

Two smooth functions $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined the same germ if they agree over some neighbourhood of the origin.

Germ - Equivalence of Germs

Definition

Dos germs f, g are equivalent if there exists $\varphi \in \mathcal{G}(n)$ such that $g=f \circ \varphi$, we denote it as $g \sim f$.

Germ - Equivalence of Germs

Definition

Dos germs f, g are equivalent if there exists $\varphi \in \mathcal{G}(n)$ such that $g=f \circ \varphi$, we denote it as $g \sim f$.

Definition

Let $k \in \mathbb{N}$, we define the k-jet of a germ f as the k-truncated Taylor series at the origin:

$$
j^{k}(f)(\bar{x})=\sum_{\substack{\alpha=\left(\alpha_{1} \ldots \alpha_{n}\right) \\|\alpha| \leq k}} \frac{1}{\alpha!} \frac{\partial^{|\alpha|} f(\overline{0})}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}} \bar{x}^{\alpha}
$$

Theory - Germs

Definition

The set of all the germs over \mathbb{R}^{n} with the usual addition and multiplication forms a ring denoted $\mathcal{E}(n)$.

Theory - Germs

Definition

The set of all the germs over \mathbb{R}^{n} with the usual addition and multiplication forms a ring denoted $\mathcal{E}(n)$.

Definition

The elements of the subring:

$$
\mathcal{M}(n)=\{g \in \mathcal{E}(n) / g(0)=0\}
$$

have no inverse, and they form an ideal.

Theory - Germs

Definition

The set of all the germs over \mathbb{R}^{n} with the usual addition and multiplication forms a ring denoted $\mathcal{E}(n)$.

Definition

The elements of the subring:

$$
\mathcal{M}(n)=\{g \in \mathcal{E}(n) / g(0)=0\}
$$

have no inverse, and they form an ideal.

Remark

$\mathcal{M}(n)$ is the sole maximal ideal of the ring $\mathcal{E}(n)$, hence $\mathcal{E}(n)$ is a local ring.

Germ - Ideals

If we consider the product

$$
\mathcal{M}(n)^{k}=\mathcal{M}(n) \cdots \cdots \mathcal{M}(n)
$$

it can be proven that:

$$
\mathcal{M}(n)^{k}=\left\{g \in \mathcal{E}(n) / j^{k-1}(g) \equiv 0\right\}
$$

Germ - Ideals

If we consider the product

$$
\mathcal{M}(n)^{k}=\mathcal{M}(n) \cdots \cdots \mathcal{M}(n)
$$

it can be proven that:

$$
\mathcal{M}(n)^{k}=\left\{g \in \mathcal{E}(n) / j^{k-1}(g) \equiv 0\right\}
$$

Remarks

- $\mathcal{M}(n)^{k+m} \subset \mathcal{M}(n)^{k}$

Germ - Ideals

If we consider the product

$$
\mathcal{M}(n)^{k}=\mathcal{M}(n) \cdots \cdots \mathcal{M}(n)
$$

it can be proven that:

$$
\mathcal{M}(n)^{k}=\left\{g \in \mathcal{E}(n) / j^{k-1}(g) \equiv 0\right\}
$$

Remarks

- $\mathcal{M}(n)^{k+m} \subset \mathcal{M}(n)^{k}$
- If $f \in \mathcal{M}(n)^{k}$, then $\frac{\partial f}{\partial x_{i}} \in \mathcal{M}(n)^{k-1}$

Germ - Codimension of a Germ

Definition

We define the Jacob's ideal of a germ f as the ideal:

$$
\Delta(f)=\left\{g_{1} \frac{\partial f}{\partial x_{1}}+\cdots+g_{n} \frac{\partial f}{\partial x_{n}} / g_{i} \in \mathcal{E}(n)\right\}
$$

Germ - Codimension of a Germ

Definition

We define the Jacob's ideal of a germ f as the ideal:

$$
\Delta(f)=\left\{g_{1} \frac{\partial f}{\partial x_{1}}+\cdots+g_{n} \frac{\partial f}{\partial x_{n}} / g_{i} \in \mathcal{E}(n)\right\}
$$

Remarks

- If $f \in \mathcal{M}(n)^{2} \Longrightarrow \Delta(f) \subset \mathcal{M}(n)$.

Germ - Codimension of a Germ

Definition

We define the Jacob's ideal of a germ f as the ideal:

$$
\Delta(f)=\left\{g_{1} \frac{\partial f}{\partial x_{1}}+\cdots+g_{n} \frac{\partial f}{\partial x_{n}} / g_{i} \in \mathcal{E}(n)\right\}
$$

Remarks

- If $f \in \mathcal{M}(n)^{2} \Longrightarrow \Delta(f) \subset \mathcal{M}(n)$.

Definition

We call codimension of un germ $f \in \mathcal{M}(n)^{2}$ a:

$$
\operatorname{codim}(f)=\operatorname{dim}(\mathcal{M}(n) / \Delta(f)) \in \mathbb{N} \cup\{\infty\}
$$

Germ - k-determinacy

Definition

Let $k \in \mathbb{N}$, a germ f is k-determined if for every germ g such that $j^{k}(f)=j^{k}(g)$, then $f \sim g$.

Germ - k-determinacy

Definition

Let $k \in \mathbb{N}$, a germ f is k-determined if for every germ g such that $j^{k}(f)=j^{k}(g)$, then $f \sim g$.

Remark

If f is k-determined then it is $(k+1)$-determined but not necessarily $(k-1)$-determined.

Germ - k-determinacy

Definition

Let $k \in \mathbb{N}$, a germ f is k-determined if for every germ g such that $j^{k}(f)=j^{k}(g)$, then $f \sim g$.

Remark

If f is k-determined then it is $(k+1)$-determined but not necessarily $(k-1)$-determined.

Definition

The smallest K such that f is K-determined is its determinative number denoted $\sigma(f)$. If it does not exist, then we assign $\sigma(f)=\infty$.

Important Theorems

Theorem

Sea $f \in \mathcal{M}(n)^{2} \Longrightarrow \sigma(f)<\infty$ if and only if $\operatorname{codim}(f)<\infty$

Important Theorems

Theorem

Sea $f \in \mathcal{M}(n)^{2} \Longrightarrow \sigma(f)<\infty$ if and only if $\operatorname{codim}(f)<\infty$

Theorem

Let $f \in \mathcal{M}(n)^{2}$ such that $\sigma(f)<\infty$, then:

$$
\sigma(f) \leq 2+\operatorname{codim}(f)
$$

Theory - Unfolding

Definition

Let $f \in \mathcal{M}(n)^{2}$ be a germ, another germ $F \in \mathcal{M}(n+r)$ is a r-unfolding of f if $f(\bar{x})=F(\bar{x}, \overline{0})$.

Theory - Unfolding

Definition

Let $f \in \mathcal{M}(n)^{2}$ be a germ, another germ $F \in \mathcal{M}(n+r)$ is a r-unfolding of \boldsymbol{f} if $f(\bar{x})=F(\bar{x}, \overline{0})$.

Definition

The universal unfoldings are the universal objects in the category of unfoldings.

Theory - Unfolding

Definition

Let $f \in \mathcal{M}(n)^{2}$ be a germ, another germ $F \in \mathcal{M}(n+r)$ is a r-unfolding of \boldsymbol{f} if $f(\bar{x})=F(\bar{x}, \overline{0})$.

Definition

The universal unfoldings are the universal objects in the category of unfoldings.

Remark

Two universal unfoldings of $f \in \mathcal{M}(n)^{2}$ (finite determined) are isomorphic.

Part IV: Algorithm for the

 construction of the Canonical Form
Algorithm

(1) Let $F: \mathbb{R}^{n} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ be a smooth function $F(\bar{z}, \bar{p})$.

Algorithm

(1) Let $F: \mathbb{R}^{n} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ be a smooth function $F(\bar{z}, \bar{p})$.
(2) Let $\left(\bar{z}_{0}, \bar{p}_{0}\right)$ such that \bar{z}_{0} is a critical point of $F\left(\cdot, \bar{p}_{0}\right)$:

$$
\frac{\partial F\left(\bar{z}_{0}, \bar{p}_{0}\right)}{\partial z_{1}}=0 \quad \ldots \quad \frac{\partial F\left(\bar{z}_{0}, \bar{p}_{0}\right)}{\partial z_{n}}=0
$$

Algorithm

(1) Let $F: \mathbb{R}^{n} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ be a smooth function $F(\bar{z}, \bar{p})$.
(2) Let $\left(\bar{z}_{0}, \bar{p}_{0}\right)$ such that \bar{z}_{0} is a critical point of $F\left(\cdot, \bar{p}_{0}\right)$:

$$
\frac{\partial F\left(\bar{z}_{0}, \bar{p}_{0}\right)}{\partial z_{1}}=0 \quad \ldots \quad \frac{\partial F\left(\bar{z}_{0}, \bar{p}_{0}\right)}{\partial z_{n}}=0
$$

(3) We move to the origin:

$$
\mathcal{F}(\bar{z}, \bar{p}) \equiv F\left(\bar{z}+\bar{z}_{0}, \bar{p}+\bar{p}_{0}\right)-F\left(\bar{z}_{0}, \bar{p}_{0}\right)
$$

\mathcal{F} satisfies $\mathcal{F}(\cdot, \overline{0})$ has $\overline{0}$ as a critical point and $\mathcal{F}(\overline{0}, \overline{0})=0$.

Algorithm

(1) $\mathcal{F}(\bar{z}, \bar{p})$ is a unfolding of $f(\bar{z}) \equiv \mathcal{F}(\bar{z}, \overline{0})$. We assume that it is a universal unfolding (and $r=\operatorname{codim}(f)$).

Algorithm

(1) $\mathcal{F}(\bar{z}, \bar{p})$ is a unfolding of $f(\bar{z}) \equiv \mathcal{F}(\bar{z}, \overline{0})$. We assume that it is a universal unfolding (and $r=\operatorname{codim}(f)$).
(6) $f(\overline{0})=0$ and $\overline{0}$ is a critical point of f, then $f \in \mathcal{M}(n)^{2}$.

Algorithm

(4) $\mathcal{F}(\bar{z}, \bar{p})$ is a unfolding of $f(\bar{z}) \equiv \mathcal{F}(\bar{z}, \overline{0})$. We assume that it is a universal unfolding (and $r=\operatorname{codim}(f)$).
(5) $f(\overline{0})=0$ and $\overline{0}$ is a critical point of f, then $f \in \mathcal{M}(n)^{2}$.
(6) If $\overline{0}$ is a non degenerate critical point, them by Morse lemma there exists $\varphi \in \mathcal{G}(n)$ such that:

$$
f(\varphi(\bar{z}))=-z_{1}^{2}-\cdots-z_{k}^{2}+z_{k+1}^{2}+\cdots+z_{n}^{2}
$$

$k=\operatorname{ind}(f)$. In a neighbourhood of the origin there are no more critical points of f. Besides $\operatorname{codim}(f)=0$.

Algorithm

(1) Let us now assume that $\overline{0}$ is a degenerated critical point of f and $\operatorname{codim}(f) \leq 5$, then there exists $\varphi \in \mathcal{G}(n)$ such that:

$$
f(\varphi(\bar{z}))=\underbrace{-z_{1}^{2}-\cdots-z_{k}^{2}+z_{k+1}^{2}+\cdots+z_{p}^{2}}_{q(\bar{z})}+Q
$$

where $k=\operatorname{ind}(f) \leq r g(f) \in\{n-2, n-1\}$ and Q is a polynomial of $(n-r g(f)) \in\{1,2\}$ variables.
Q is one and only one of the 11 possible polynomials (we will see them later) and satisfies $\operatorname{codim}(Q)=\operatorname{codim}(f)$.

Algorithm

(3) Once we have the unique Q we build a canonical universal unfolding \bar{Q} of Q, with $r=\operatorname{codim}(f)$ parameters.

Hence $\bar{F} \equiv q+\bar{Q}$ is a universal unfolding of $q+Q=f \circ \varphi$.

Algorithm

(3) Once we have the unique Q we build a canonical universal unfolding \bar{Q} of Q, with $r=\operatorname{codim}(f)$ parameters.

Hence $\bar{F} \equiv q+\bar{Q}$ is a universal unfolding of $q+Q=f \circ \varphi$.
(0) On the other hand \mathcal{F} is a universal unfolding of f, then $\mathcal{F} \circ\left(\varphi \times I d_{\mathbb{R}^{r}}\right)$ is a universal unfolding of $f \circ \varphi=q+Q$ with r parameters.

Algorithm

(10) So we have \bar{F} and $\mathcal{F} \circ\left(\varphi \times I d_{r}\right)$ universal unfoldings of f with the same number of parameters, they are this isomorphic. Furthermore, their catastrophe germ $\chi_{\mathcal{F}} \sim \chi_{\bar{F}}$ are equivalent.

Algorithm

(10) So we have \bar{F} and $\mathcal{F} \circ\left(\varphi \times I d_{r}\right)$ universal unfoldings of f with the same number of parameters, they are this isomorphic. Furthermore, their catastrophe germ $\chi_{\mathcal{F}} \sim \chi_{\bar{F}}$ are equivalent.

Definition

The catastrophe germs are called elementary catastrophes.

Algorithm

(10) So we have \bar{F} and $\mathcal{F} \circ\left(\varphi \times I d_{r}\right)$ universal unfoldings of f with the same number of parameters, they are this isomorphic. Furthermore, their catastrophe germ $\chi_{\mathcal{F}} \sim \chi_{\bar{F}}$ are equivalent.

Definition

The catastrophe germs are called elementary catastrophes.

Important

The isomorphism between the universal unfoldings relates the initial data F with a canonical polynomial form $\bar{F}=q+\bar{Q}$, it relates also the equilibria, catastrophes and bifurcation sets.

Aplicación a la Máquina de Zeeman

Applying this algorithm to $F(x, y ; \theta)=V_{(x, y)}(\theta)$ we obtain that there exists a isomorphism of universal unfoldings:

$$
\begin{aligned}
& \frac{\phi}{\phi}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\end{aligned} \quad \varepsilon \in \mathcal{M}(2)
$$

such that:
$a_{0} \theta^{4}+x \theta+y \theta^{2} \equiv \bar{V}_{(x, y)}(\theta)=$

$$
=V_{\left(\bar{\phi}_{1}(x, y), \bar{\phi}_{2}(x, y)+y_{1}\right)}\left(\varphi\left[\phi_{1}(\theta, x, y)\right]\right)-V_{\left(0, y_{1}\right)}(0)+\varepsilon(x, y)
$$

Thom Theorem

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set $G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set $G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set $G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.
- Any initial potential V can be approximated by potentials $g \in G$ to study its catastrophes.

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set $G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.
- $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is smooth and locally structurally stable for every equilibrium $(\bar{z}, \bar{p}) \in M_{g}$.
- Any initial potential V can be approximated by potentials $g \in G$ to study its catastrophes.

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set
$G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.
- $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is smooth and locally structurally stable for every equilibrium $(\bar{z}, \bar{p}) \in M_{g}$.
- Any initial potential V can be approximated by potentials $g \in G$ to study its catastrophes.
- Every good enough approximation are "equivalent".

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set
$G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.
- $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is smooth and locally structurally stable for every equilibrium $(\bar{z}, \bar{p}) \in M_{g}$.
- its catastrophe germ $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is equivalent to one of the 11 elementary catastrophes $\chi_{h} \times I d_{\mathbb{R}^{r-c}}$ for every $(\bar{z}, \bar{p}) \in C_{g}$.
- Any initial potential V can be approximated by potentials $g \in G$ to study its catastrophes.
- Every good enough approximation are "equivalent".

Thom Theorem

Thom Theorem

Let $n \in \mathbb{N}$ and $1 \leq r \leq 5$, then there exists a dense open set $G \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n+r}, \mathbb{R}\right)$ in the Whitney topology such that for every $g \in G$:

- the equilibria surface $M_{g} \subset \mathbb{R}^{n+r}$ is a r-dimensional smooth submanifold.
- $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is smooth and locally structurally stable for every equilibrium $(\bar{z}, \bar{p}) \in M_{g}$.
- its catastrophe germ $\chi_{g}: M_{g} \rightarrow \mathbb{R}^{r}$ is equivalent to one of the 11 elementary catastrophes $\chi_{h} \times I d_{\mathbb{R}^{r-c}}$ for every $(\bar{z}, \bar{p}) \in C_{g}$.
- Any initial potential V can be approximated by potentials $g \in G$ to study its catastrophes.
- Every good enough approximation are "equivalent".
- For the Zeeman's machine we saw that $\chi_{V}\left(C_{V}\right)=B_{V}$ was a cusp.

Thom Theorem - Classification

1) Fold $r=1$

$$
\bar{Q}_{p}(x)=x^{3}+p x
$$

Thom Theorem - Classification

1) Fold $r=1$
$\bar{Q}_{p}(x)=x^{3}+p x$
Differentiating with respect to the variables x :

$$
M_{\bar{Q}}=\left\{(x, p) \in \mathbb{R}^{2} / 3 x^{2}+p=0\right\}=\left\{\left(\lambda,-3 \lambda^{2}\right)\right\}
$$

Thom Theorem - Classification

1) Fold $r=1$
$\bar{Q}_{p}(x)=x^{3}+p x$
Differentiating with respect to the variables x :

$$
M_{\bar{Q}}=\left\{(x, p) \in \mathbb{R}^{2} / 3 x^{2}+p=0\right\}=\left\{\left(\lambda,-3 \lambda^{2}\right)\right\}
$$

Differentiating again:

$$
C_{\bar{Q}}=\left\{\left(\lambda,-3 \lambda^{2}\right) \in \mathbb{R}^{2} / 6 \lambda=0\right\}=\{(0,0)\}
$$

Thom Theorem - Classification

1) Fold $r=1$
$\bar{Q}_{p}(x)=x^{3}+p x$
Differentiating with respect to the variables x :

$$
M_{\bar{Q}}=\left\{(x, p) \in \mathbb{R}^{2} / 3 x^{2}+p=0\right\}=\left\{\left(\lambda,-3 \lambda^{2}\right)\right\}
$$

Differentiating again:

$$
C_{\bar{Q}}=\left\{\left(\lambda,-3 \lambda^{2}\right) \in \mathbb{R}^{2} / 6 \lambda=0\right\}=\{(0,0)\}
$$

Projecting $C_{\bar{Q}}$ over the parameter space:

$$
B_{\bar{Q}}=\{0\}
$$

Thom Theorem - Classification

Thom Theorem - Classification

2) Cusp $r=2$
$\bar{Q}_{\left(p_{1}, p_{2}\right)}(x)=x^{4}+p_{1} x+p_{2} x^{2}$

Thom Theorem - Classification

2) Cusp $r=2$
$\bar{Q}_{\left(p_{1}, p_{2}\right)}(x)=x^{4}+p_{1} x+p_{2} x^{2}\left(=\theta^{4}+x \theta+y \theta^{2}\right.$ Zeeman! $)$

Thom Theorem - Classification

2) Cusp $r=2$
$\bar{Q}_{\left(p_{1}, p_{2}\right)}(x)=x^{4}+p_{1} x+p_{2} x^{2}\left(=\theta^{4}+x \theta+y \theta^{2}\right.$ Zeeman! $)$

$$
\begin{gathered}
M_{\bar{Q}}=\left\{\left(x, p_{1}, p_{2}\right) \in \mathbb{R}^{3} / 4 x^{3}+p_{1}+2 p_{2} x=0\right\} \\
C_{\bar{Q}}=\left\{\left(\lambda, 8 \lambda^{3},-6 \lambda^{2}\right) / x \in \mathbb{R}\right\} \\
B_{\bar{Q}}=\left\{\left(8 \lambda^{3},-6 \lambda^{2}\right) / x \in \mathbb{R}\right\}
\end{gathered}
$$

Thom Theorem - Classification

Thom Theorem - Classification

Thom Theorem - Classification

Thom Theorem - Classification

3) Swallowtail $r=3$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}\right)}(x)=x^{5}+p_{1} x^{3}+p_{2} x^{2}+p_{3} x$

Thom Theorem - Classification

3) Swallowtail $r=3$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}\right)}(x)=x^{5}+p_{1} x^{3}+p_{2} x^{2}+p_{3} x$

Thom Theorem - Classification

4) Butterfly $r=4$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}\right)}(x)=x^{6}+p_{1} x^{4}+p_{2} x^{3}+p_{3} x^{2}+p_{4} x$
5) Indian Tent $r=5$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)}(x)=x^{7}+p_{1} x^{5}+p_{2} x^{4}+p_{3} x^{3}+p_{4} x^{2}+p_{5} x$
6) Elliptic Umbilic $r=3$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}\right)}(x, y)=x^{3}-x y^{2}+p_{1} y+p_{2} x+p_{3} y^{2}$
7) Hyperbolic Umbilic $r=3$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}\right)}(x, y)=x^{3}+x y^{2}+p_{1} y+p_{2} x+p_{3} y^{2}$

Thom Theorem - Classification

8) Parabolic Umbilic $r=4$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}\right)}(x, y)=x^{2} y+y^{4}+p_{1} x+p_{2} y+p_{3} x^{2}+p_{4} y^{2}$
9) Symbolic Umbilic $r=5$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)}(x, y)=x^{3} y+y^{4}+p_{1} x+p_{2} y+p_{3} x y+p_{4} y^{2}+p_{5} x y^{2}$
10) Second Hyperbolic Umbilic $r=5$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)}(x, y)=x^{2} y+y^{5}+p_{1} x+p_{2} y+p_{3} x^{2}+p_{4} y^{2}+p_{5} y^{3}$
11) Second Elliptic Umbilic $r=5$
$\bar{Q}_{\left(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right)}(x, y)=x^{2} y-y^{5}+p_{1} x+p_{2} y+p_{3} x^{2}+p_{4} y^{2}+p_{5} y^{3}$

Part V: Cool Examples

Caustics

Caustics

Caustics

$$
\begin{aligned}
& \alpha=2 \theta-\pi \\
& \gamma_{\theta}: y-r \sin (\theta)=\tan (2 \theta)(x-r \cos (\theta)) \\
& \text { Differentiating and getting rid of } \theta \text { : } \\
& \left\{\begin{array}{l}
x=r \cos (\tau)-\frac{\cos ^{2}(\tau)}{2}(r \cos (\tau)+r \sin (\tau) \tan (2 \tau)) \\
y=r \sin (\tau)-\frac{\cos ^{2}(\tau)}{2}(r \cos (\tau)+r \sin (\tau) \tan (2 \tau)) \tan (2 \tau)
\end{array}\right.
\end{aligned}
$$

Caustics

The shape of Planet Earth

The shape of Planet Earth

The shape of Planet Earth

http://www.josleys.com/show_gallery.php?galid=313

Why Poire Shape?

Poincaré failed too!

The Dwarf Planet Haumea!

Equatorial view

Polar view

There exists a dwarf planet beyond the orbit of Neptune with Ellipsoidal shape.
R. R. Thom, Structural Stability and Morphogenesis, Benjamin (1975).
E.C. Zeeman, Applications of the Catastrophe Theory, Tokyo Int. Conf. on Manifolds (1973).

Thanks for your attention

R. Thom, Structural Stability and Morphogenesis, Benjamin (1975).
E.C. Zeeman, Applications of the Catastrophe Theory, Tokyo Int. Conf. on Manifolds (1973).

