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Part I: A bit of Mechanics
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Lagrangian Systems

We will consider conservative mechanical systems with
positional depending potential energy V (r̄).

We are interested in the statics and not in the dynamics.
The extrema of the potential V gives the equilibria of the
system.
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Part II: Zeeman’s
Catastrophe Machine
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Zeeman’s Machine

Sir Erik Christopher Zeeman
1925 –
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b P = (x, y)

b

b

D =
(
sin(θ), cos(θ)

)
θ

A = (0,−4)

L1

L2

b

Zeeman’s Machine

Horizontal Plane.
P is mobile.
D is fixed to the disk.
A is fixed to the plane.

The disk can rotate freely.
Elastic joining A with D.
Elastic joining D with P .
Masses are unimportant
(static).
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Zeeman’s Machine

The potential energy is given by:

V =
k(L1 − 2)2

2
+
k(L2 − 2)2

2

With generalized coordinates:

V(x,y)(θ)=
k
2

[(
2−
√

(cθ−x)2+(sθ−y)2
)2

+
(

2−
√

(cθ)2+(sθ+4)2
)2

]

(x, y) can be considered as control parameters. V(x,y)

biparametric family of potentials.

For every (x, y) we look for the extrema of V(x,y), i.e. θ0
such that V ′

(x,y)
(θ0) = 0.
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Zeeman’s Machine

Questions

Does this extremum exist?
Is it unique?
Do the answers depend on (x, y)?
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Zeeman’s Machine

Nonlinear dynamics, Drexel University: http://lagrange.physics.drexel.edu/flash/zcm/
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Potenciales.avi
Media File (video/avi)



Zeeman’s Machine - Properties

Despite the smoothness of V , the behaviour is discontinuous.

The catastrophe theory is named after such behaviours.

Some parameters (x, y) admit two minima, which one is chosen
depends on the path over the parameter space (not necessarily
the absolute one!).

This behaviour is known as hysteresis.

There are loops over the parameter space that lead smoothly to
different equilibria.

This behaviour is known as divergence.
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Zeeman’s Machine - Simplification

V is hard to work with, but we can obtain an “alternative
potential” (canonical form) V , that closed to a degenerate
critical point, behaves like V :

V (x,y)(θ) = a0θ
4 + xθ + yθ2

Remark
It is proven that the relevant information is preserved.
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y
x

θ

Zeeman’s Machine - Study

Definition
The surface of equilibria:

MV = {(x, y, θ) / V ′
(x,y)

(θ) = 0} = {(x, y, θ) / 4a0θ
3+x+2yθ = 0}

MV

xy

Minima

Maxima
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y
x

θ

Zeeman’s Machine - Study

Definition
The surface of equilibria:

MV = {(x, y, θ) / V ′
(x,y)

(θ) = 0} = {(x, y, θ) / 4a0θ
3+x+2yθ = 0}

MV

xy
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Zeeman’s Machine - Study

Key Point
We want to know when the behaviour changes i.e. when a
minimum appears/disappears.
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Zeeman’s Machine - Study
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Zeeman’s Machine - Study
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Zeeman’s Machine - Study

Definition
The set of catastrophes:

CV = {(x, y, θ) / V ′
(x,y)

(θ) = 0 y V
′′
(x,y)

(θ) = 0}

Definition
Its projection over the plane xy defines the bifurcation set:

BV = {(x, y) ∈ R2 / (x, y, θ) ∈ CV for some θ}

The projection χV : CV → BV is called catastrophe germ.

For the Zeeman’s machine we obtain a cusp:

BV = {(8λ3,−6λ2)}
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Zeeman’s Machine - Study

MV

CV

BV
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Zeeman’s Machine - Study

MV

CV

BV
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Zeeman’s Machine - Study

Remarks
The bifurcation set BV is not a smooth manifold.

CV and BV allow us to understand the pathologies of the
Zeeman’s catastrophe machine.
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Zeeman’s Machine - Study
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Zeeman’s Machine - Study

Globally there are four linked cusps, with two minima and two
maxima in the interior region.
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Part III: A bit of Theory
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Theory - Germs

Definition
Two smooth functions f, g : Rn → R defined the same germ if
they agree over some neighbourhood of the origin.

-2 -1 1 2

-200

-100

100
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Germ - Equivalence of Germs

Definition
Dos germs f, g are equivalent if there exists ϕ ∈ G(n) such that
g = f ◦ ϕ, we denote it as g ∼ f .

Definition
Let k ∈ N, we define the k-jet of a germ f as the k-truncated
Taylor series at the origin:

jk(f)(x̄) =
∑

α=(α1...αn)

|α|≤k

1

α!

∂|α|f(0̄)

∂x
α1
1 · · · ∂xαnn

x̄α
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Theory - Germs

Definition
The set of all the germs over Rn with the usual addition and
multiplication forms a ring denoted E(n).

Definition
The elements of the subring:

M(n) = {g ∈ E(n) / g(0) = 0}

have no inverse, and they form an ideal.

Remark
M(n) is the sole maximal ideal of the ring E(n), hence E(n) is a
local ring.
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Germ - Ideals

If we consider the product

M(n)k =M(n) · k)· · · · M(n)

it can be proven that:

M(n)k = {g ∈ E(n) / jk−1(g) ≡ 0}

Remarks

M(n)k+m ⊂M(n)k

If f ∈M(n)k, then
∂f

∂xi
∈M(n)k−1
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Germ - Codimension of a Germ

Definition
We define the Jacob’s ideal of a germ f as the ideal:

∆(f) =

{
g1
∂f

∂x1

+ · · ·+ gn
∂f

∂xn
/ gi ∈ E(n)

}

Remarks

If f ∈M(n)2 =⇒ ∆(f) ⊂M(n).

Definition

We call codimension of un germ f ∈M(n)2 a:

codim(f) = dim
(
M(n)

/
∆(f)

)
∈ N ∪ {∞}
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Germ - k-determinacy

Definition
Let k ∈ N, a germ f is k-determined if for every germ g such
that jk(f) = jk(g), then f ∼ g.

Remark
If f is k-determined then it is (k + 1)-determined but not
necessarily (k − 1)-determined.

Definition
The smallest K such that f is K-determined is its
determinative number denoted σ(f). If it does not exist, then
we assign σ(f) =∞.
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Important Theorems

Theorem

Sea f ∈M(n)2 =⇒ σ(f) <∞ if and only if codim(f) <∞

Theorem

Let f ∈M(n)2 such that σ(f) <∞, then:

σ(f) ≤ 2 + codim(f)
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Theory - Unfolding

Definition

Let f ∈M(n)2 be a germ, another germ F ∈M(n+ r) is a
r-unfolding of f if f(x̄) = F (x̄, 0̄).

Definition
The universal unfoldings are the universal objects in the
category of unfoldings.

Remark

Two universal unfoldings of f ∈M(n)2 (finite determined) are
isomorphic.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 26



Theory - Unfolding

Definition

Let f ∈M(n)2 be a germ, another germ F ∈M(n+ r) is a
r-unfolding of f if f(x̄) = F (x̄, 0̄).

Definition
The universal unfoldings are the universal objects in the
category of unfoldings.

Remark

Two universal unfoldings of f ∈M(n)2 (finite determined) are
isomorphic.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 26



Theory - Unfolding

Definition

Let f ∈M(n)2 be a germ, another germ F ∈M(n+ r) is a
r-unfolding of f if f(x̄) = F (x̄, 0̄).

Definition
The universal unfoldings are the universal objects in the
category of unfoldings.

Remark

Two universal unfoldings of f ∈M(n)2 (finite determined) are
isomorphic.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 26



Part IV: Algorithm for the

construction of the Canonical Form
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Algorithm

1 Let F : Rn × Rr → R be a smooth function F (z̄, p̄).

2 Let (z̄0, p̄0) such that z̄0 is a critical point of F (·, p̄0):
∂F (z̄0, p̄0)

∂z1
= 0 · · · ∂F (z̄0, p̄0)

∂zn
= 0

3 We move to the origin:

F(z̄, p̄) ≡ F (z̄ + z̄0, p̄+ p̄0)− F (z̄0, p̄0)

F satisfies F(·, 0̄) has 0̄ as a critical point and F(0̄, 0̄) = 0.
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Algorithm

4 F(z̄, p̄) is a unfolding of f(z̄) ≡ F(z̄, 0̄). We assume that it
is a universal unfolding (and r = codim(f)).

5 f(0̄) = 0 and 0̄ is a critical point of f , then f ∈M(n)2.

6 If 0̄ is a non degenerate critical point, them by Morse
lemma there exists ϕ ∈ G(n) such that:

f
(
ϕ(z̄)

)
= −z2

1
− · · · − z2

k
+ z2

k+1
+ · · ·+ z2

n

k = ind(f). In a neighbourhood of the origin there are no
more critical points of f . Besides codim(f) = 0.
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Algorithm

7 Let us now assume that 0̄ is a degenerated critical point of
f and codim(f) ≤ 5, then there exists ϕ ∈ G(n) such that:

f
(
ϕ(z̄)

)
= −z2

1
− · · · − z2

k
+ z2

k+1
+ · · ·+ z2

ρ︸ ︷︷ ︸
q(z̄)

+Q

where k = ind(f) ≤ rg(f) ∈ {n− 2, n− 1} and Q is a
polynomial of (n− rg(f)) ∈ {1, 2} variables.

Q is one and only one of the 11 possible polynomials (we
will see them later) and satisfies codim(Q) = codim(f).
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Algorithm

8 Once we have the unique Q we build a canonical universal
unfolding Q of Q, with r = codim(f) parameters.

Hence F ≡ q +Q is a universal unfolding of q +Q = f ◦ ϕ.

9 On the other hand F is a universal unfolding of f , then
F ◦ (ϕ× IdRr) is a universal unfolding of f ◦ ϕ = q +Q with
r parameters.
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Algorithm

10 So we have F and F ◦ (ϕ× Idr) universal unfoldings of f
with the same number of parameters, they are this
isomorphic. Furthermore, their catastrophe germ χF ∼ χF
are equivalent.

Definition
The catastrophe germs are called elementary catastrophes.

Important
The isomorphism between the universal unfoldings relates the
initial data F with a canonical polynomial form F = q +Q, it
relates also the equilibria, catastrophes and bifurcation sets.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 31



Algorithm

10 So we have F and F ◦ (ϕ× Idr) universal unfoldings of f
with the same number of parameters, they are this
isomorphic. Furthermore, their catastrophe germ χF ∼ χF
are equivalent.

Definition
The catastrophe germs are called elementary catastrophes.

Important
The isomorphism between the universal unfoldings relates the
initial data F with a canonical polynomial form F = q +Q, it
relates also the equilibria, catastrophes and bifurcation sets.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 31



Algorithm

10 So we have F and F ◦ (ϕ× Idr) universal unfoldings of f
with the same number of parameters, they are this
isomorphic. Furthermore, their catastrophe germ χF ∼ χF
are equivalent.

Definition
The catastrophe germs are called elementary catastrophes.

Important
The isomorphism between the universal unfoldings relates the
initial data F with a canonical polynomial form F = q +Q, it
relates also the equilibria, catastrophes and bifurcation sets.

J. Margalef Bentabol — Introduction to the Catastrophe Theory 31



Aplicación a la Máquina de Zeeman

Applying this algorithm to F (x, y; θ) = V(x,y)(θ) we obtain that
there exists a isomorphism of universal unfoldings:

φ : R3 → R3

φ : R2 → R2 ε ∈M(2)

such that:

a0θ
4+xθ + yθ2 ≡ V (x,y)(θ) =

= V(φ̄1(x,y),φ̄2(x,y)+y1)

(
ϕ[φ1(θ, x, y)]

)
− V(0,y1)(0) + ε(x, y)

J. Margalef Bentabol — Introduction to the Catastrophe Theory 32



Thom Theorem

René Thom 1923 - 2002

Fields Medal
1958
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Thom Theorem

Thom Theorem

Let n ∈ N and 1 ≤ r ≤ 5, then there exists a dense open set
G ⊂ C∞(Rn+r,R) in the Whitney topology such that for every g ∈ G:

the equilibria surface Mg ⊂ Rn+r is a r-dimensional smooth
submanifold.

χg : Mg → Rr is smooth and locally structurally stable for every
equilibrium (z̄, p̄) ∈Mg.

its catastrophe germ χg : Mg → Rr is equivalent to one of the 11
elementary catastrophes χh × IdRr−c for every (z̄, p̄) ∈ Cg.

Any initial potential V can be approximated by potentials g ∈ G to study
its catastrophes.

Every good enough approximation are “equivalent”.

For the Zeeman’s machine we saw that χV (CV ) = BV was a cusp.
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Thom Theorem - Classification

1) Fold r = 1

Q
p
(x) = x3 + px

Differentiating with respect to the variables x:

MQ = {(x, p) ∈ R2 / 3x2 + p = 0} = {(λ,−3λ2)}

Differentiating again:

CQ = {(λ,−3λ2) ∈ R2 / 6λ = 0} = {(0, 0)}

Projecting CQ over the parameter space:

BQ = {0}
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Thom Theorem - Classification

p

x

MQ

CQ
b b BQ

p > 0

p < 0xmin =
√
− p

3

Qp(x) = x3 + px

xmax = −
√
− p

3

Sin puntos
críticos

Un máximo y un
mínimo relativo

Punto de
inflexión

χQ
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Thom Theorem - Classification

2) Cusp r = 2

Q
(p1,p2)

(x) = x4 + p1x+ p2x
2

(= θ4 + xθ + yθ2 Zeeman!)

MQ = {(x, p1, p2) ∈ R3 / 4x3 + p1 + 2p2x = 0}

CQ = {(λ, 8λ3,−6λ2) / x ∈ R}

BQ = {(8λ3,−6λ2) / x ∈ R}
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Thom Theorem - Classification

MQ

CQ

BQ
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Thom Theorem - Classification
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Thom Theorem - Classification
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Thom Theorem - Classification

3) Swallowtail r = 3

Q
(p1,p2,p3)

(x) = x5 + p1x
3 + p2x

2 + p3x
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Thom Theorem - Classification

4) Butterfly r = 4

Q
(p1,p2,p3,p4)

(x) = x6 + p1x
4 + p2x

3 + p3x
2 + p4x

5) Indian Tent r = 5

Q
(p1,p2,p3,p4,p5)

(x) = x7 + p1x
5 + p2x

4 + p3x
3 + p4x

2 + p5x

6) Elliptic Umbilic r = 3

Q
(p1,p2,p3)

(x, y) = x3 − xy2 + p1y + p2x+ p3y
2

7) Hyperbolic Umbilic r = 3

Q
(p1,p2,p3)

(x, y) = x3 + xy2 + p1y + p2x+ p3y
2
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Thom Theorem - Classification

8) Parabolic Umbilic r = 4

Q
(p1,p2,p3,p4)

(x, y) = x2y + y4 + p1x+ p2y + p3x
2 + p4y

2

9) Symbolic Umbilic r = 5

Q
(p1,p2,p3,p4,p5)

(x, y) = x3y+ y4 + p1x+ p2y+ p3xy+ p4y
2 + p5xy

2

10) Second Hyperbolic Umbilic r = 5

Q
(p1,p2,p3,p4,p5)

(x, y) = x2y + y5 + p1x+ p2y + p3x
2 + p4y

2 + p5y
3

11) Second Elliptic Umbilic r = 5

Q
(p1,p2,p3,p4,p5)

(x, y) = x2y − y5 + p1x+ p2y + p3x
2 + p4y

2 + p5y
3
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Part V: Cool Examples
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Caustics
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Caustics

J. Margalef Bentabol — Introduction to the Catastrophe Theory 45



Caustics

β
β

α

b

γθ

θ

α = 2θ − π

γθ : y−r sin(θ) = tan(2θ)(x−r cos(θ))

Differentiating and getting rid of θ:





x = r cos(τ)− cos2(τ)

2

(
r cos(τ) + r sin(τ) tan(2τ)

)

y = r sin(τ)− cos2(τ)

2

(
r cos(τ) + r sin(τ) tan(2τ)

)
tan(2τ)
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Caustics
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caustica.avi
Media File (video/avi)



The shape of Planet Earth
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MacLaurin

Jacobi

Jacobi

Poincaré

Poincaré

The shape of Planet Earth

http://www.josleys.com/show gallery.php?galid=313

J. Margalef Bentabol — Introduction to the Catastrophe Theory 48



MacLaurin

Jacobi

Jacobi

Poincaré

Poincaré

The shape of Planet Earth
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pera.mov
Media File (video/quicktime)



Why Poire Shape?

Poincaré failed too!
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The Dwarf Planet Haumea!

There exists a dwarf planet beyond the
orbit of Neptune with Ellipsoidal shape.
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Thanks for your attention

R. Thom, Structural Stability and Morphogenesis, Benjamin (1975).

E.C. Zeeman, Applications of the Catastrophe Theory, Tokyo Int. Conf.
on Manifolds (1973).
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