Gauss words and topological classification of finitely determined map germs from \mathbb{R}^2 to \mathbb{R}^2

Juan Antonio Moya Pérez

joint work with

Juan José Nuño Ballesteros

II Spanish Young Topologists Meeting

Barcelona, 13th of December 2013

Basic results and definitions

2 The link of a finitely determined map germ

- Fukuda's theorem and the link of a map germ
- Gauss words

3 Topological classification of corank 1 map germs

Definition (Set germ)

Let (X, \mathcal{T}) be a topological space and $x \in X$. We say that two subsets $S, T \subseteq X$ define the same germ at x if there is an open neighborhood U of x in X such that $U \cap S = U \cap T$.

Definition (Set germ)

Let (X, \mathcal{T}) be a topological space and $x \in X$. We say that two subsets $S, T \subseteq X$ define the same germ at x if there is an open neighborhood U of x in X such that $U \cap S = U \cap T$. The relation of defining the same germ at x is a binary equivalent relation. We will call set germ X at x to each one of these equivalence classes. Moreover, if $S \subseteq X$ is a subset of X, we will denote by (S, x) the class defined by S.

Let (X, \mathcal{T}) , (Y, \mathcal{T}') be two topological spaces and $x \in X$. We will say that two maps $f : U \to Y$, $g : V \to Y$, where $U, V \subseteq X$ are open neighborhoods of x in X, *define the same germ at* x if there is another open neighborhood $W \subseteq U \cap V$ of x in X such that

 $f|_W = g|_W.$

Let (X, \mathcal{T}) , (Y, \mathcal{T}') be two topological spaces and $x \in X$. We will say that two maps $f : U \to Y$, $g : V \to Y$, where $U, V \subseteq X$ are open neighborhoods of x in X, *define the same germ at* x if there is another open neighborhood $W \subseteq U \cap V$ of x in X such that

$f|_W = g|_W.$

Once again, this relación define a binary equivalent relation and we call *map germ from* (X, x) to Y to each one of these classes. Moreover, if $f : U \to Y$ is a map, we will denote by $f : (X, x) \to Y$ the class defined by f and we will use the notation $f : (X, x) \to (Y, y)$ to denote a map germ $f : (X, x) \to Y$ such that f(x) = y.

Let (X, \mathcal{T}) , (Y, \mathcal{T}') be two topological spaces and $x \in X$. We will say that two maps $f : U \to Y$, $g : V \to Y$, where $U, V \subseteq X$ are open neighborhoods of x in X, *define the same germ at* x if there is another open neighborhood $W \subseteq U \cap V$ of x in X such that

$$f|_W = g|_W.$$

Once again, this relación define a binary equivalent relation and we call *map germ from* (X, x) to Y to each one of these classes. Moreover, if $f : U \to Y$ is a map, we will denote by $f : (X, x) \to Y$ the class defined by f and we will use the notation $f : (X, x) \to (Y, y)$ to denote a map germ $f : (X, x) \to Y$ such that f(x) = y.

• From now on we suppose $X = Y = \mathbb{R}^2$ y x = y = 0.

Let (X, \mathcal{T}) , (Y, \mathcal{T}') be two topological spaces and $x \in X$. We will say that two maps $f : U \to Y$, $g : V \to Y$, where $U, V \subseteq X$ are open neighborhoods of x in X, *define the same germ at* x if there is another open neighborhood $W \subseteq U \cap V$ of x in X such that

$$f|_W = g|_W.$$

Once again, this relación define a binary equivalent relation and we call *map germ from* (X, x) to Y to each one of these classes. Moreover, if $f : U \to Y$ is a map, we will denote by $f : (X, x) \to Y$ the class defined by f and we will use the notation $f : (X, x) \to (Y, y)$ to denote a map germ $f : (X, x) \to Y$ such that f(x) = y.

- From now on we suppose $X = Y = \mathbb{R}^2$ y x = y = 0.
- We will work with map germs of the form $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$.

Basic results and definitions

The link of a finitely determined map germ Topological classification of corank 1 map germs

Definition

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a map germ

- Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a map germ
 - We say *f* is smooth if one of his representatives is smooth in an open neighborhood of 0.

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a map germ

- We say *f* is smooth if one of his representatives is smooth in an open neighborhood of 0.
- We say that *f* is a germ of diffeomorphism if it has a representative that is a diffeomorphism.

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two smooth map germs.

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two smooth map germs.

We say that *f* and *g* are *A*-equivalent, and we denote it by *f* ~_{*A*} *g*, if there are germs of diffeomorphism α : (ℝ², 0) → (ℝ², 0) and β : (ℝ², 0) → (ℝ², 0) such that the following diagram commutes:

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two smooth map germs.

• We say that *f* and *g* are \mathcal{A} -equivalent, and we denote it by $f \sim_{\mathcal{A}} g$, if there are germs of diffeomorphism $\alpha : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ and $\beta : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ such that the following diagram commutes:

$$\begin{array}{ccc} (\mathbb{R}^2, 0) & \stackrel{f}{\longrightarrow} & (\mathbb{R}^2, 0) \\ & & & & & \downarrow^{\beta} \\ (\mathbb{R}^2, 0) & \stackrel{g}{\longrightarrow} & (\mathbb{R}^2, 0) \end{array}$$

• In the case that *α* and *β* are germs of homeomorphism, we will say that *f* and *g* are *topologically equivalent*.

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ. We will call *k*-jet of *f* and we will denote it by $j^k f(0)$ to the Taylor expansion of *f* of order *k* at (0, 0).

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ. We will call *k*-jet of *f* and we will denote it by $j^k f(0)$ to the Taylor expansion of *f* of order *k* at (0, 0).

Definition

Let $f: (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ.

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ. We will call *k*-jet of *f* and we will denote it by $j^k f(0)$ to the Taylor expansion of *f* of order *k* at (0, 0).

Definition

Let $f: (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ.

• We will say that *f* is k-determined if for every smooth map germ $g : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ such that $j^k f(0) = j^k g(0)$ we have that *f* and *g* are \mathcal{R} -equivalent.

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ. We will call *k*-jet of *f* and we will denote it by $j^k f(0)$ to the Taylor expansion of *f* of order *k* at (0, 0).

Definition

Let $f: (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a smooth map germ.

• We will say that *f* is k-determined if for every smooth map germ $g : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ such that $j^k f(0) = j^k g(0)$ we have that *f* and *g* are \mathcal{R} -equivalent.

2 *f* will be finitely determined if it is k-determined for some $k \ge 0$.

Basic results and definitions The link of a finitely determined map germ

Topological classification of corank 1 map germs

Definition

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function.

- Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function.
 - We say that f is a Morse function if for any x such that f'(x) = 0 we have that $f''(x) \neq 0$, that is, f does not have any degenerate critical point.

- Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function.
 - We say that f is a Morse function if for any x such that f'(x) = 0 we have that $f''(x) \neq 0$, that is, f does not have any degenerate critical point.
 - We say that *f* is stable if and only if it is a Morse function and all of its critical values are distinct.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a smooth function.

- We say that f is a Morse function if for any x such that f'(x) = 0 we have that $f''(x) \neq 0$, that is, f does not have any degenerate critical point.
- We say that *f* is stable if and only if it is a Morse function and all of its critical values are distinct.

Definition

Let $f : \mathbb{R} \to \mathbb{R}^2$ be a smooth map. We say that f has a transversal double point if there are $p_1, p_2 \in \mathbb{R}$ such that $f(p_1) = f(p_2) = q y (df)_{p_1} (T_{p_1} \mathbb{R}) + (df)_{p_2} (T_{p_2} \mathbb{R}) = T_q \mathbb{R}^2$

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ a smooth map germ

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ a smooth map germ

• We will call rank of f to the rank of the Jacobian matrix of a representative of f.

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ a smooth map germ

- We will call rank of f to the rank of the Jacobian matrix of a representative of f.
- If *f* has maxim rank we will say that f is *regular*. Otherwise, we will say that is *singular*.

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ a smooth map germ

- We will call rank of f to the rank of the Jacobian matrix of a representative of f.
- If *f* has maxim rank we will say that f is *regular*. Otherwise, we will say that is *singular*.
- We will call corank of f to the value 2 r, where r is the rank of f.

Let $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ a smooth map germ

- We will call rank of f to the rank of the Jacobian matrix of a representative of f.
- If *f* has maxim rank we will say that *f* is *regular*. Otherwise, we will say that is *singular*.
- We will call corank of f to the value 2 r, where r is the rank of f.

Definition

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a smooth map germ such that $f^{-1}(0) = \{0\}$ and let $w \in \mathbb{R}^2$ a regular value small enough. We will call *topological degree of f* and we will denote it by deg(f) to

$$\deg(f) = \sum_{z_i \in f^{-1}(w)} \operatorname{ind}(f, z_i),$$

where

$$ind(f, z_i) = \begin{cases} 1, \text{ if } Jf(z_i) > 0, \\ -1, \text{ if } Jf(z_i) < 0. \end{cases}$$

This definition doesn't depend on the chosen regular value w.

We define the multiplicity of $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ as

$$m(f) = \dim_{\mathbb{R}} \frac{\mathbb{R}\{x, y\}}{\langle f_1, f_2 \rangle},$$

where f_1, f_2 denote the components of f and $\mathbb{R}\{x, y\}$ is the local algebra of germs of analytic functions $(\mathbb{R}^2, 0) \to \mathbb{R}$

We define the multiplicity of $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ as

$$m(f) = \dim_{\mathbb{R}} \frac{\mathbb{R}\{x, y\}}{\langle f_1, f_2 \rangle},$$

where f_1, f_2 denote the components of f and $\mathbb{R}\{x, y\}$ is the local algebra of germs of analytic functions $(\mathbb{R}^2, 0) \to \mathbb{R}$

Definición

Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a smooth map.

We define the multiplicity of $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ as

$$m(f) = \dim_{\mathbb{R}} \frac{\mathbb{R}\{x, y\}}{\langle f_1, f_2 \rangle},$$

where f_1, f_2 denote the components of f and $\mathbb{R}\{x, y\}$ is the local algebra of germs of analytic functions $(\mathbb{R}^2, 0) \to \mathbb{R}$

Definición

Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a smooth map.

• We say that *f* has a fold point at $p \in \mathbb{R}^2$ if $f(x, y) \sim_{\mathcal{R}} (x, y^2)$ in a neighborhood of *p*.

We define the multiplicity of $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ as

$$m(f) = \dim_{\mathbb{R}} \frac{\mathbb{R}\{x, y\}}{\langle f_1, f_2 \rangle},$$

where f_1, f_2 denote the components of f and $\mathbb{R}\{x, y\}$ is the local algebra of germs of analytic functions $(\mathbb{R}^2, 0) \to \mathbb{R}$

Definición

Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a smooth map.

- **()** We say that *f* has a fold point at $p \in \mathbb{R}^2$ if $f(x, y) \sim_{\mathcal{R}} (x, y^2)$ in a neighborhood of *p*.
- ② We say that *f* has a simple cusp at *p* ∈ \mathbb{R}^2 if *f*(*x*, *y*) ~_{*A*} (*x*, *xy* + *y*³) in a neighborhood of *p*.

We define the multiplicity of $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ as

$$m(f) = \dim_{\mathbb{R}} \frac{\mathbb{R}\{x, y\}}{\langle f_1, f_2 \rangle},$$

where f_1 , f_2 denote the components of f and $\mathbb{R}\{x, y\}$ is the local algebra of germs of analytic functions $(\mathbb{R}^2, 0) \to \mathbb{R}$

Definición

Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a smooth map.

() We say that *f* has a fold point at $p \in \mathbb{R}^2$ if $f(x, y) \sim_{\mathcal{R}} (x, y^2)$ in a neighborhood of *p*.

(2) We say that f has a simple cusp at $p \in \mathbb{R}^2$ if $f(x, y) \sim_{\mathcal{R}} (x, xy + y^3)$ in a neighborhood of p.

We will denote by $S_{1,0}(f)$ the set of fold points of f, by $S_{1,1}(f)$ the set of simple cusps and by $S_1(f) = S_{1,0}(f) \cup S_{1,1}(f)$ the set of singular points of corank 1 of f.

Definition/Theorem(Whitney)

Let $f: U \to V$ be a smooth proper map, with U, V being open subsets of \mathbb{R}^2 . We say that f is stable if and only if:

Definition/Theorem(Whitney)

Let $f: U \to V$ be a smooth proper map, with U, V being open subsets of \mathbb{R}^2 . We say that f is stable if and only if:

Its only singularities are fold points and simple cusps

Definition/Theorem(Whitney)

Let $f : U \to V$ be a smooth proper map, with U, V being open subsets of \mathbb{R}^2 . We say that f is stable if and only if:

Its only singularities are fold points and simple cusps

2 $f|_{S_{1,0}(f)}$ is an immersion with double transversal points.

Basic results and definitions

The link of a finitely determined map germ Topological classification of corank 1 map germs

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \rightarrow V$, with U, V being open subsets of \mathbb{R}^2 such that:

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \rightarrow V$, with U, V being open subsets of \mathbb{R}^2 such that:

$f^{-1}(0) = \{0\}$

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \rightarrow V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- **2** $f: U \to V$ is proper

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \to V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- **2** $f: U \to V$ is proper
- **(3)** *f* has an isolated instability in the origin ($f_{|U\setminus\{0\}}$ is stable)

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \to V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- $I: U \to V \text{ is proper}$
- **(3)** *f* has an isolated instability in the origin ($f_{|U \setminus \{0\}}$ is stable)

Corollary

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, there is a representative $f : U \to V$ with U, V being open subsets of \mathbb{R}^2 such that:

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \to V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- 2 $f: U \to V$ is proper
- If has an isolated instability in the origin $(f_{|U\setminus\{0\}} \text{ is stable})$

Corollary

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, there is a representative $f : U \to V$ with U, V being open subsets of \mathbb{R}^2 such that:

 $f^{-1}(0) = \{0\}$

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \to V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- $I: U \to V \text{ is proper}$
- If has an isolated instability in the origin $(f_{|U\setminus\{0\}} \text{ is stable})$

Corollary

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, there is a representative $f : U \to V$ with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- **2** $f: U \to V$ is proper

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. The, there is a representative $f : U \to V$, with U, V being open subsets of \mathbb{R}^2 such that:

- $f^{-1}(0) = \{0\}$
- $I: U \to V \text{ is proper}$
- **(3)** *f* has an isolated instability in the origin ($f_{|U \setminus \{0\}}$ is stable)

Corollary

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, there is a representative $f : U \to V$ with U, V being open subsets of \mathbb{R}^2 such that:

- **1** $f^{-1}(0) = \{0\}$
- $I: U \to V \text{ is proper}$
- $f_{|U\setminus|0|}$ presents as unique singularities fold points and simple cusps and $f_{|(U\setminus|0|)\cap S_{1,0}(f)}$ is an immersion with double transversal points.

Basic results and definitions

The link of a finitely determined map germ Topological classification of corank 1 map germs

Remark

If we choose an open neighborhood U in the representative of f small enough, we can leave out of it all the singular points of dimension 0 and as a consequence, $f_{|(U\setminus\{0\})\cap S_1(f)}$ will be an injective immersion.

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, up to \mathcal{A} -equivalence, there is a representative $f : U \to V$ and $\epsilon_0 > 0$, such that, for any ϵ with $0 < \epsilon \le \epsilon_0$ we have:

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, up to \mathcal{A} -equivalence, there is a representative $f : U \to V$ and $\epsilon_0 > 0$, such that, for any ϵ with $0 < \epsilon \le \epsilon_0$ we have:

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, up to \mathcal{A} -equivalence, there is a representative $f : U \to V$ and $\epsilon_0 > 0$, such that, for any ϵ with $0 < \epsilon \le \epsilon_0$ we have: **§** $\overline{S}_{i}^{1} = f^{-1}(S_{i}^{1})$ is diffeomorphic to S^{1} .

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, up to \mathcal{A} -equivalence, there is a representative $f : U \to V$ and $\epsilon_0 > 0$, such that, for any ϵ with $0 < \epsilon \le \epsilon_0$ we have:

- $\widetilde{S}_{\epsilon}^{1} = f^{-1}(S_{\epsilon}^{1})$ is diffeomorphic to S^{1} .
- $\textcircled{\textbf{O}} \ \ \, \text{The restricted map } f\mid_{\widetilde{S}^1_{\epsilon}}:\widetilde{S}^1_{\epsilon}\longrightarrow S^1_{\epsilon} \ \ \, \text{is stable, that is, it is a Morse function all of whose critical values are distinct.}$

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a finitely determined map germ. Then, up to \mathcal{A} -equivalence, there is a representative $f : U \to V$ and $\epsilon_0 > 0$, such that, for any ϵ with $0 < \epsilon \le \epsilon_0$ we have:

•
$$\widetilde{S}_{\epsilon}^{1} = f^{-1}(S_{\epsilon}^{1})$$
 is diffeomorphic to S^{1} .

(2) The restricted map $f|_{\widetilde{S}_{\ell}^1} : \widetilde{S}_{\ell}^1 \longrightarrow S_{\epsilon}^1$ is stable, that is, it is a Morse function all of whose critical values are distinct.

If is topologically equivalent to the cone of $f|_{\tilde{S}_{2}^{1}}$.

We say that the stable map $f|_{\tilde{S}^1_{\epsilon}} : \tilde{S}^1_{\epsilon} \to S^1_{\epsilon}$ is the *link* of *f*, where *f* is a representative such that (1), (2) and (3) of Fukuda's theorem hold for any ϵ with $0 < \epsilon \le \epsilon_0$. This link is well defined, up to \mathcal{A} -equivalence. We also say that ϵ_0 is a Milnor-Fukuda radius for *f*.

We say that the stable map $f|_{\tilde{S}^1_{\epsilon}} : \tilde{S}^1_{\epsilon} \to S^1_{\epsilon}$ is the *link* of *f*, where *f* is a representative such that (1), (2) and (3) of Fukuda's theorem hold for any ϵ with $0 < \epsilon \le \epsilon_0$. This link is well defined, up to \mathcal{A} -equivalence. We also say that ϵ_0 is a Milnor-Fukuda radius for *f*.

Corollary

Two finitely determined map germs $f, g : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ are topologically equivalent if their associated links are topologically equivalent.

Let $\gamma: S^1 \to S^1$ be a stable map, that is, such that all its singularities are of Morse type and its critical values are distinct. We fix orientations in each S^1 and we also choose base points $z_0 \in S^1$ in the source and $a_0 \in S^1$ in the target.

Let $\gamma: S^1 \to S^1$ be a stable map, that is, such that all its singularities are of Morse type and its critical values are distinct. We fix orientations in each S^1 and we also choose base points $z_0 \in S^1$ in the source and $a_0 \in S^1$ in the target.

Suppose that γ has *r* critical values labeled by *r* letters $a_1, \ldots, a_r \in S^1$ and let us denote their inverse images by $z_1, \ldots, z_k \in S^1$. We assume they are ordered such that $a_0 \leq a_1 < \cdots < a_r$ and $z_0 \leq z_1 < \cdots < z_k$ and following the orientation of each S^1 .

Let $\gamma: S^1 \to S^1$ be a stable map, that is, such that all its singularities are of Morse type and its critical values are distinct. We fix orientations in each S^1 and we also choose base points $z_0 \in S^1$ in the source and $a_0 \in S^1$ in the target. Suppose that γ has r critical values labeled by r letters $a_1, \ldots, a_r \in S^1$ and let us denote their invorce images by $z_r \in S^1$. We assume they are ordered such that $a_0 \in a_1 \in \dots \in a_n$

inverse images by $z_1, \ldots, z_k \in S^1$. We assume they are ordered such that $a_0 \le a_1 < \cdots < a_r$ and $z_0 \le z_1 < \cdots < z_k$ and following the orientation of each S^1 .

We define a map

Let $\gamma: S^1 \to S^1$ be a stable map, that is, such that all its singularities are of Morse type and its critical values are distinct. We fix orientations in each S^1 and we also choose base points $z_0 \in S^1$ in the source and $a_0 \in S^1$ in the target. Suppose that γ has r critical values labeled by r letters $a_1, \ldots, a_r \in S^1$ and let us denote their inverse images by $z_1, \ldots, z_k \in S^1$. We assume they are ordered such that $a_0 \leq a_1 < \cdots < a_r$ and $z_0 \leq z_1 < \cdots < z_k$ and following the orientation of each S^1 .

We define a map

 $\begin{array}{cccc} \sigma: & \{1,\ldots,k\} & \longrightarrow & \{a_1,\ldots,a_r,\overline{a}_1,\ldots,\overline{a}_r\} \\ & i & \longmapsto & \begin{cases} a_j, & \text{if } \gamma(z_i) = a_j \text{ and } z_i \text{ is a regular point,} \\ \hline a_j, & \text{if } \gamma(z_i) = a_j \text{ and } z_i \text{ is a singular point.} \end{cases}$

We call *Gauss word* to the sequence $\sigma(1) \dots \sigma(k)$.

Basic results and definitions The link of a finitely determined map germ Topological classification of corank 1 map germs

Fukuda's theorem and the link of a map germ Gauss words

Examples

Juan Antonio Moya Pérez Gauss w

Gauss words and topological classification of f.d.m.germs from \mathbb{R}^2 to \mathbb{R}

• To have enough information to describe the topological behavior of our link we will choose as link diagram the diagram (2).

- To have enough information to describe the topological behavior of our link we will choose as link diagram the diagram (2).
- If we change the chosen orientations and base points in each S¹ we obtain equivalent Gauss words. They are perfectly defined under these elections.

- To have enough information to describe the topological behavior of our link we will choose as link diagram the diagram (2).
- If we change the chosen orientations and base points in each S¹ we obtain equivalent Gauss words. They are perfectly defined under these elections.
- We have the following restrictions in its construction:

- To have enough information to describe the topological behavior of our link we will choose as link diagram the diagram (2).
- If we change the chosen orientations and base points in each S¹ we obtain equivalent Gauss words. They are perfectly defined under these elections.
- We have the following restrictions in its construction:
 - The number of folds (and as a consequence of different letters) have to be even.

- To have enough information to describe the topological behavior of our link we will choose as link diagram the diagram (2).
- If we change the chosen orientations and base points in each S¹ we obtain equivalent Gauss words. They are perfectly defined under these elections.
- We have the following restrictions in its construction:
 - The number of folds (and as a consequence of different letters) have to be even.
 - Two inverse images of the same letter cannot appear together.

Theorem

Let $\gamma, \delta: S^1 \to S^1$ be two stable maps. Then γ, δ are topologically equivalent if and only if

 $\begin{cases} w(\gamma) \simeq w(\delta), & \text{if } \gamma, \delta \text{ are singular,} \\ |\deg(\gamma)| = |\deg(\delta)|, & \text{if } \gamma, \delta \text{ are regular.} \end{cases}$

Theorem

Let $\gamma, \delta: S^1 \to S^1$ be two stable maps. Then γ, δ are topologically equivalent if and only if

 $\begin{cases} w(\gamma) \simeq w(\delta), & \text{if } \gamma, \delta \text{ are singular,} \\ |\deg(\gamma)| = |\deg(\delta)|, & \text{if } \gamma, \delta \text{ are regular.} \end{cases}$

Proposition

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two finitely determined map germs such that they are topologically equivalent. Then, their respective links are topologically equivalent.

Corollary

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two finitely determined map germs. Then f, g are topologically equivalent if and only if

> $\begin{cases} w(f) \simeq w(g), & \text{if } f, g \text{ are singular outside the origin} \\ |\deg(f)| = |\deg(g)|, & \text{if } f, g \text{ are regular outside the origin.} \end{cases}$ if f, g are singular outside the origin,

Corollary

Let $f, g: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be two finitely determined map germs. Then f, g are topologically equivalent if and only if

> $w(f) \simeq w(g),$ if f, g are singular outside the origin, $|\deg(f)| = |\deg(g)|,$ if f, g are regular outside the origin. if f, g are singular outside the origin,

Remark

If f is regular outside the origin and |deg(f)| = r, then f is topologically equivalent to the germ $z \rightarrow z^r$, with z = x + iy.

Proposition

Let $f: (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a map germ of corank ≤ 1 . Then *f* can be written as

$$f(x,y)=(x,f_2(x,y)),$$

where $f_2: (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}, 0)$.

Let us consider now $j^1 f(0)$.

Let us consider now $j^1 f(0)$.

If $j^{1}f(0) \sim_{\mathcal{R}} (x, y)$, *f* is regular and we have finished. We suppose $j^{1}f(0) \sim_{\mathcal{R}} (x, 0)$.

Lemma

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a corank 1 map germ. Then:

Lemma

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a corank 1 map germ. Then: • $j^2 f(0) \sim_{\mathcal{A}} (x, y^2)$,
Lemma

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a corank 1 map germ. Then: **)** $j^2 f(0) \sim_{\mathcal{A}} (x, y^2)$, **)** $j^2 f(0) \sim_{\mathcal{A}} (x, xy)$,

Lemma

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a corank 1 map germ. Then: **)** $j^2 f(0) \sim_{\mathcal{A}} (x, y^2)$, **(a)** $j^2 f(0) \sim_{\mathcal{A}} (x, xy)$, **(b)** $j^2 f(0) \sim_{\mathcal{A}} (x, 0)$.

Lemma

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a corank 1 map germ. Then: **a** $j^2 f(0) \sim_{\mathcal{R}} (x, y^2)$, **b** $j^2 f(0) \sim_{\mathcal{R}} (x, xy)$, **c** $j^2 f(0) \sim_{\mathcal{R}} (x, 0)$.

Theorem

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined corank 1 map germ with $j^2 f(0) \sim_{\mathcal{A}} (x, y^2)$. Then f is topologically equivalent to (x, y^2) .

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ such that $j^2 f(0) \sim_{\mathcal{R}} (x, xy)$ and let us denote by *n* the multiplicity of *f*, Then:

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ such that $j^2 f(0) \sim_{\mathcal{R}} (x, xy)$ and let us denote by *n* the multiplicity of *f*, Then:

• f is topologically equivalent to (x, y^2) (the fold) if n is even or

Let $f : (\mathbb{R}^2, 0) \longrightarrow (\mathbb{R}^2, 0)$ be a finitely determined map germ such that $j^2 f(0) \sim_{\mathcal{R}} (x, xy)$ and let us denote by *n* the multiplicity of *f*, Then:

- f is topologically equivalent to (x, y^2) (the fold) if n is even or
- **(2)** *f* is topologically equivalent to $(x, xy + y^3)$ (the simple cusp) if *n* is odd.

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a weighted homogeneous finitely determined map germ, with 2-jet of type (x, 0) and multiplicity ≤ 5 . Then, f is topologically equivalent to one of the germs of the following tables, depending on the topological configuration of its associated link and its topological degree.

Let $f : (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ be a weighted homogeneous finitely determined map germ, with 2-jet of type (x, 0) and multiplicity ≤ 5 . Then, f is topologically equivalent to one of the germs of the following tables, depending on the topological configuration of its associated link and its topological degree.

References

J.A.Moya-Pérez, Clasificación topológica de gérmenes de aplicación finitamente determinados de \mathbb{R}^2 en \mathbb{R}^2 , Tesis de Máster 2008.

J.A.Moya-Pérez and J.J.Nuño-Ballesteros, The link of a finitely determined map germ from \mathbb{R}^2 to \mathbb{R}^2 , J. Math. Soc. Japan 62 (2010), No. 4, 1069–1092.

J.J.Nuño-Ballesteros y M.C.Romero-Fuster, Singularidades de aplicaciones diferenciales, Apuntes de la asignatura.

¡Gracias por vuestra atención! Gràcies per la vostra atenció! Thanks for your attention!