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ORTHOGONAL LIE GROUPS
o Let K be one of the algebras R, C or H (quaternions).

O(n,K) = {A € K™": AA* =T}

is the compact Lie group of orthogonal (resp. unitary,
symplectic) matrices

o Let G be the connected component of the identity (SO(n), U(n)
or Sp(n)).

@ The Lie algebra of G is formed by the skew-symmetric (resp.
skew-Hermitian) matrices,

g={XeK™": X+ X" =0}

@ The Riemannian metric induced on G C K"*" by the usual inner
product (X, Y) = RTr(X*Y) is bi-invariant
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COMPACT SYMMETRIC SPACES

Preliminaries

o Let 0: G — G be an involutive automorphism and
K=G’={BeG:o(B)=B}

— We shall assume that o is the restriction of an involutive
automorphism o : K™ — K"*" of unital algebras.

— Also, o(X*) = o(X)* for all X € K™".

* These conditions are not too restrictive; for instance, all the compact
irreducible Riemannian symmetric spaces in Cartan's classification
fullfill them.
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o @ The homogeneous space G/K (null torsion and parallel
Pereira-Sdez curvature) is called a globally symmetric compact space.
P @ The embedding v([B]) = Bo(B)~!, v: G/K < G, is an
isometry (up to the constant 2).

Proposition

Assume that G/K is connected. Then the image M = v(G/K) of v
is the connected component N, of the identity of the submanifold

N={BecG:o(B)=B""}.

@ The manifold M will be called the Cartan model of the
symmetric space G/K.

@ The isometric action of G induced by v on M is given by
IM(A) = BAo(B)™L, for Be G, Ae M.
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e Espacios simétricos irreducibles, compactos y simplemente conexos:
Perera-Sies
Preliminaries Tipo Modelo Cartan dim o(X)
Al SU(n)/SO(n) (n—1)(n+2)/2 X
All SU(2n)/Sp(n) (n—1)(2n+1) —JXJ
AIL | SU(p + q)/SU(p) x SU(q) 2pq IpaX1pq
BDI | 5O(p + q)/50(p) x SO(q) Pq Lp,aX1pq
DIII 50(2n)/U(n) [n> 4] n(n—1) —JXJ
CI Sp(n)/U(n) [n>3] n(n+1) —iXi
CIL | Sp(p+ q)/Sp(p) x Sp(q) 4pq Ip,gX1pq
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The Lie group G itself is a symmetric space defined by the

tomorphi
SCEHE AT o GxG — GxG
(81782) — (B2aBl)
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— The fixed point set is the diagonal A.
— The diffeomorphism G = (G x G)/A is given by B = [(B,1)].
- N={(B,B1})e GxG}

Proposition

For any point A € M, the tangent space is

TaM = {Y e K™": YA* + AY* =0, o(Y) = Y*}.
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spaces @ The height function hx: K"™"” — R with respect to an
hyperplane perpendicular to X* € K"*" (X # 0) is given, up to
a constant, by

Height functions hX( Y) = <X*, Y> = §R TI'(XY)

o Let hY: M — R be the restriction of hx to the Cartan model
M C G C K™ of the symmetric space G/K.

We denote X — X + o(X). Notice that 0(5\() = X*.

Proposition

The gradient of hﬁ‘(’ at any point A € M is the projection of grad hx
onto ToM, that is,

(grad h¥)4 = % ()? . Ag()?)A) :
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Remark.— Instead of height, one can consider the distance to X*.

Since
|A— X*> = ahd(A)+ b, abeR,

both functions have the same critical points in M.

N
Geometrically, these are the points where the line AX™ is
perpendicular to TaM.

M.J. Pereira-Saez Morse functions on symmetric spaces



Height functions

Morse functions
on symmetric
spaces

M.J.

Pereira-Saez

Height functions

Proposition

The Hessian H(h&”)A: TaM — TaM of the height function
hﬁ\(”: M — R is given by

H(hY)a(W) = —% (Aao?)vv + Wa()?)A) .

An easy computation shows that:

(i) A'is a critical point of hY if and only if the matrix X*Ais
Hermitian;

(i) W e TaM iff WA* is skew-Hermitian and o(W) = W*;

(iif) W is in the kernel of the Hessian if in addition the matrix X*W
is Hermitian.
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Example (The complex Grassmannian U(2)/(U(1) x U(1)))
It is defined by the automorphism o(A) = I 1Al; 1, where

I = <(1) _01> The Cartan model is an 5% C U(2) = §3 x S,

M:{(S _SE>,(5,2)ER><(C:s2+|z|2:1}.

z

. 00 < 00
M
o Let us take on M hy' with X = 0 1) Then X = (0 2)

and the critical points are the two poles +1.

0
(HAM) (W) = (—/2)W, so 1Y/ is a Morse function on M.

@ The tangent space is T.;;M = {W = (_OE Z),z S (C} and
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@ The gradient of h$: G > Rat Ac G is
G 1 *
(grad hg)a = §(X — AXA).
o The Hessian H(h$)a: TaG — TaG is given by
1
H(hY)a(W) = —5 (AXW + WXA).

* A similar computation is valid mutatis mutandi for the gradient flow
and the local structure of the critical set in the group G. In all
formulae it is enough to substitute X by 2.X*.
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Let M C G be the Cartan model of the symmetric space G/K. Then
the critical set in M of the height function hY is

H.f. on the Lie
group
Y(hY) =2X(h (X)) nM.

- So L(hg) N M c £(h¥).
~ Notice that X* = AXA = X = Ac(X)A when o(A) = A*.

If o(X) = X*, then the critical points of the height function h% on
the symmetric space M verify that £ (h¥) = £(h$) N M.
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Height functions on the Lie group

e Ramanujam [J. Differ. Geom., 1969] stated that

the critical submanifolds of G/K are shown to be the
intersection of the space G/K and the critical
submanifolds of G.

@ Dynnikov-Veselov [St. Petersbg. Math. J., 1997] wrote that
symmetric spaces [...] are invariant by the gradient flow
of the height function on the corresponding Lie groups

and that
the restricted flow coincides with the gradient flow of

the [restricted] function.
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@ As we have just seen, this kind of result only holds in particular
—although important— cases, but is no longer true for a generic
height function on a symmetric space:

— When X =1 the critical points of the height function h) are
just the points of ¥(h%) that belong to M.

— The same result is true when X is a real diagonal matrix for
some symmetric spaces (studied by Duan [Birkh3user, 2005] and
Dynnikov-Veselov [St. Petersbg. Math. J., 1997]).
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H.f. on the Lie
group

As a rule, the preceding result no longer holds:

M={qg=s+jz:scR,zcC, with s* + |z]> =1}

Example (Sp(1)/U(1))
o It is defined by the automorphism o(X) = —iXi.
@ The Cartan model M is the sphere S C Sp(1) = S3 formed by

Notice that g has a null i-coordinate.

Height functions on the Lie group

Now we consider the height function hx with X =i+ j+ k.
@ On the group G = Sp(1), the critical points of h$ are

¥(h§) = {+

1

\/g(i—kj-i-k)}.

These two points are not in M because they have a non-null

i-coordinate.
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o Nevertheless, there are points of M that are critical points for
the height function restricted to the Cartan model M C Sp(1) of

Sp(1)/U(1).

@ This time, the condition for a point g € M to be critical for hﬁ\(”

is
X = qo(X)q,

where X = X* + o(X) = —-2(j + k). So, from —2q(j + k) =
2(j + k)g we obtain that

S(h) = {i%(j +K)}
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@ The generalized Cayley transform allows to linearize the gradient
flow of any height function on a symmetric space.

o Let A€ G, that is, AA* = 1. We consider the open set of
matrices

Q(A) = {X e K™": A+ X is invertible}.

Definition (Gémez-Macias-PS, Ann. Global Anal. Geom., 2011)

The Cayley tansform centered at A is the map ca: Q(A) — Q(A*)
defined by

caX)=(T—-AX)A+ X)) = (A+X)"HI - XA%).

Its most interesting property is that it is a diffeomorphism, with
c;l = Ca~.
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Linearization of the gradient

If Ae G then

Cg(A)OO'ZO'OCA

on Q(A), or, equivalently, o o c,a) = ca o a on Q(a(A)).

Let M C G be the Cartan model of the symmetric space G/K. Let
A€ M. Then

Qu(A) = Q(A) N M

is a contractible open subspace of M.
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Linearization of the gradient

Theorem

Let h&” be an arbitrary height function on the symmetric space M.
Let A be a critical point. Then the solution of the gradient equation

4o/ = X — ao(X)a,

with initial condition ag € Qp(A), is the image by the Cayley
transform cp~ of the curve

B(t) = exp(_TtA*)A()ﬁo exp(_Tt)A(A*)7

where X = X* + o(X) and By = ca(ag) € Ta- M.
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Linearization of the gradient

We can obtain an explicit formula for the solution making use of the
property A* exp(XA*) = exp(A*X )

a(t) = A(sinh(%A*f()+cosh(2A*5\<)A*ao)

[ t ..o -
x ((cosh(7 A"X) + sinh( 7 A"X) A ) g

*This formula, for the particular case of a Lie group G, the classical Cayley
transform ¢ and the particular height function hS where D is a real
diagonal matrix is due to Dynnikov and Vesselov [St. Petersbg. Math. J.,
1997].
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Relationship between gradient flows

o If one restricts to the case X = D a real diagonal matrix such
that o(D) = D, then the gradient flow of h$ will be tangent to
the symmetric space M, embedded into G.

@ That means that the restricted flow coincides with the gradient
flow of the height function restricted to M, with respect to the
induced metric.

@ But usually the symmetric space will not be invariant under the
gradient flow. In fact, the gradient flow of h$ could even be
tranverse to M.
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Fe Let us consider again Sp(1)/U(1). Take the critical point
Freliminanes A= (1/\/5)(1 + k) € M. The gradient flow line of hy passing
Height functions through ao = 1 iS giVen by
1 i
Relationship aM(t) = sech tv/2 — j(tanh t\/i)—l c M.

between \/§

gradient flows

On the other hand, the flow line of /1§ in the group G passing
through the same point ag =1 is

aC(t) = sech(tV/3) — tanh(t\/g)i—i_j—;—k

e

where we have chosen the Cayley transform corresponding to the
critical point A = (1/v/3)(i +j + k). Notice that o () ¢ M for
t # 0.

M.J. Pereira-Saez Morse functions on symmetric spaces



Polar decomposition and critical set

Morse functions
on symme!
spaces

M.J.

Pereira-Saez

Polar
decomposition
and critical set

© Polar decomposition

M.J. Pereira-Saez

and critical set

Morse functions on symmetric spaces



Polar decomposition and critical set

Morse functions
on symmetric
spaces

M.J.

Pereira-Saez

o For Lie Groups, h§ is Morse or Bott-Morse depending on the
matrix X singular values.

o Let X = UDV* be the singular value decomposition (SVD) of

X, then
Polar (grad hX)A = V(grad hD)V*AUU*.
and crica set

Analogously,

(Hhx)a(Y) = V(Hhp)v-au(V* YU)U*.
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@ The study of Morse-Bott functions can be considerably
simplified by means of the singular value decomposition.

@ Also there is an interesting relationship between polar forms and
Polar critical points.

decomposition
and critical set

@ We shall show that there exist decompositions conformed to
Cartan model.
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o Given Y € K" ", there exist orthogonal (resp. unitary,
symplectic) matrices U, V such that ¥ = UDV" where

nxXn
D= . e K"*",
Polar »
and crica set tiln,
for 0,t?,..., t2 the real and non-negative eigenvalues of the
Hermitian positive-semidefinite matrix YY™*.

@ So we have the left polar decomposition Y = 50, where
Q = UV"* is orthogonal and S = UDU* is H.p.-s.
(S is the only H.p.-s. square root of YY* = UD?U*).
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Polar decomposition and critical set

e Each A € £(h$) determines a decomposition Y = (YA)A* of Y,
where ¥ = YA is Hermitian but no necessarily positive
semidefinite (almost polar).

o Y = WAW*, where

and E,' =

._E

Then the value of the function at the critical point A is

RS(A) =RTr(Z) =ty Tr By + - + t, Tr .

M.J. Pereira-Saez
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Proposition

The critical point A € G is a global maximum of h$ if and only if the
decomposition (YA)A* is a true polar decomposition (i.e. the
Hermitian matrix ¥ = YA is positive-semidefinite).

Polar
decomposition
and critical set

o When Y = SA* is a polar decomposition, A maximizes the
distance of Y to the orthogonal matrices. In the same way, it
maximizes the function R Tr(YB), B € G.
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Polar decomposition and critical set Polar decompositions in a symmetric space

@ Remember that the critical points of hﬁ‘(/’ are the critical points
of h® __ that lie in M.
a(X)

o Given X = UDV* an SVD decomposition we shall assume that
o(D) is positive-semidefinite
*For symmetric spaces in Cartan’s classification, either (D) = D or

o(D) = —JDJ, with J = ((1) _0’)

Theorem (adapted polar decomposition)

Let Y € K"™" be a matrix such that o(Y) = Y*. Assume that o(D)
is positive semi-definite for the matrix D of singular values of Y.

Then there exists a polar decomposition Y = S such that
a(Q) = Q* and o(S) = Q*SQ.
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Corollary

There exists a right polar decomposition Y = QS’ such that
() = Q* and o(S') = QS'Q*.

Corollary (adapted SVD)

PDin a
symmetric space There exists a singular value decomposition Y = UDV* such that the

matrix © = U*o (V) verifies 0(©) = ©*.
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@ Under mild hypothesis, the study of any height function h¥ can
be reduced to the particular case h"D”, where

— D is a real non-negative diagonal matrix and

— M’ C G is a symmetric space diffeomorphic to M.

Height functions
associated to
real diagonal
matrices
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Height functions associated to real diagonal matrices

o Let X = UDV* be an adapted SVD. Then, from
o(V)a(D)o(V)* = o(S) = QSQ* = UDU*

it follows that o(D) = ©*DO.
Now, we have that ¢/(D) = D, so

D' =2D and ¢'(D’) = 2D.

Proposition

Assume M = N. Then the point A € M is a critical point of hﬁ‘{’ if
and only if U*AV € M’ is a critical point of hﬁ,”,, where X = UDV'*
is an adapted SVD.

M.J. Pereira-Saez Morse functions on symmetric spaces



Height functions associated to real diagonal matrices Description of the critical set

Morse functions
on symmetric
spaces

Description of @ Height functions associated to real diagonal matrices
the critical set . . L
@ Description of the critical set

M.J. Pereira-Saez Morse functions on symmetric spaces



Height functions associated to real diagonal matrices Description of the critical set

Morse functions
on symmetric
spaces

Let A be a critical point of h§, that is, D = ADA. Then A can be
decomposed into boxes, of size ng, ny,. .., ng respectively,

al

._M

such that AgA; = | and A,? =1, A=A forl <i<k.

Description of @ Recall that Z(hg’) = ):(hg) nM
@ Then h§ is a Morse function if and only if dim SY(A) =0,
which is equivalent to no =0and ny =--- =n, = 1.
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Y (h§) =2 ¥ (hx) = O(no, K) x X(ny) x - -+ x L(ny), where (n;) is
the disjoint union of G,;"', 0< p<n.

The height function h§ in the Lie group G is a Morse function if and
only if the singular values of the matrix X are positive and pairwise
different.

Description of
the critical set
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e G/K = 5p(2)/U(2) (complex structures on H? which are
compatible with the hermitian product, i.e., J € Sp(2) such
that 72 = —1I).

o M=N={Aec Sp(2): o(A) = A*}.

Explicitly, it is formed by the diagonal matrices

<g g) o lal = 18] = 1, R(ai) = R(si) =0,

jointly with the matrices

Final example (g ﬂo_;;ﬁili) , B#£D0, |o[|2 + |/@|2 =1, %(ai) =0.
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Let us take X = <)6 O) € H>*2 with x =1+jand y =i+j.

— First, we study the function h$ on the Lie group G.
° X =UDV* = 55X diag(v/2,v/2)I. Then

M.J.
Pereira-Saez

S(h§) =¥ (h§) 2 ¥(2) = G U G2 L G2.
Two points and Sp(2)/(Sp(1) x Sp(1)) = S*.
The three components are {£I} and the sphere

{(5 ) ssersrisr -1},

B
e which are the orbits by the adjoint action of I, —I and
nal example
+P =+ ((1) _01) respectively.
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o Finally, the critical set of h)G< is
Y(h$) = VE(hS)U* = {+U*} U G2U*

o Notice that Z(h$) N M = 0.

Final example
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S s The restriction hY:
N @ Let us remember that X(hY) = Z(h(f()?)) N M.
o We have
(3 2).

where xp = X —ixi = 2j and yp = y — iyi = 2 + 2j. Notice that
x| = |yl but |xo| # |yol-

ox o [ 0 2 0
This is an adapted SVD.
e Y(h§) = (1) x £(1), that is, four points. Explicitly

Y (hg) = {A € Sp(2): DA* = AD} = {+I,+P}.

Final example

e Now, Z(hf()?)) = VI (h§)U* = {£U*, £PU*}, and these four

points are in M, then it follows that hﬁ‘{’ is a Morse function.
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